• Title/Summary/Keyword: DUPIC

Search Result 131, Processing Time 0.023 seconds

Environmental Effects of DFDF Normal Operation (정상운전시 DFDF 시설의 환경영향평가)

  • 박장진;이호희;신진명;김종호;양명승
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.621-626
    • /
    • 2003
  • A DUPIC nuclear fuel is a newly developed fuel for CANDU reactors based on the concept of refabrication of spent PWR fuel by a dry process. Because a spent PWR fuel, a highly radioactive material, is used as a starting material, the experimental verification of DUPIC nuclear fuel fabrication requires an appropriate facility which should satisfy engineering requirements and guarantees safe operation. DUPIC nuclear fuel development team modified M6 hot-cell in IMEF to construct the dedicated facility(DFDF) for tile experiment. The experiment with spent PWR fuel have been conducted since January of 2000. Environmental effects of DFDF normal operation have been investigated when DUPIC nuclear fuel is fabricated with the maximum capacity of 50kg U/yr. The analysis results of the radiological safety of DFDF facility have shown that both national regulation limit and IMEF design criteria are satisfied.

  • PDF

Robotic Floor Surface Decontamination System

  • Kim, Kiho;Park, Jangjin;Myungseung Yang
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.133-134
    • /
    • 2004
  • DUPIC (Direct Use of spent PWR fuel In CANDU) fuel cycle technology is being developed at Korea Atomic Energy Research Institute (KAERI). All the DUPIC fuel fabrication processes are remotely conducted in the completely shielded M6 hot-cell located in the Irradiated Material Examination Facility (IMEF) at KAERI. Undesirable products such as spent nuclear fuel powder debris and contaminated wastes are inevitably created during the DUPIC nuclear fuel fabrication processes.(omitted)

  • PDF

The Oxygen Potential of Urania Nuclear Fuel During Irradiation

  • Park, Kwang-Heon
    • The Korean Journal of Ceramics
    • /
    • v.4 no.2
    • /
    • pp.72-77
    • /
    • 1998
  • A defect model for UO$_2$ fuel containing soluble fission products was devised based on the defect structure of pure and doped uranias. Using the equilibrium between fuel solid-solution and fission-products and the material balance within the fuel, a tracing method to get the stoichiometry change of urania fuel with burnup was made. This tracing method was applied to high burnup urania fuel and DUPIC fuel. The oxygen potential of urania fuel turned out to increase slightly with burnup. The stoichiometry change was calculated to be negligible due to the buffering role f Mo. The oxygen potential of DUPIC fuel out to be sensitive to the initial chemical state of Mo in the fuel.

  • PDF

A Simple Model for RAM Analysis and Its Application to DUPIC Fuel Fabrication Facility

  • Ko, Won-Il;Park, Jong-Won;Lee, Jae-Sol;Park, Hyun-Soo
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.505-510
    • /
    • 1996
  • A simple model for RAM (Reliability, Availability and Maintainability) analysis and its computer code are developed for application to DUPIC fuel fabrication system. The approach is obtained by linking the allocation model (top-down method) to bottom-up method for RAM analysis. As a result, the availability requirement of subsystem, as well as the buffer storage requirement between processes, are evaluated for the DUPIC facility..

  • PDF

사용전 및 사용후 DUPIC 핵연료의 방사선량률 분석

  • 김윤구;박범락;임재용;박광헌;황주호
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05b
    • /
    • pp.799-804
    • /
    • 1995
  • DUPIC 핵연료의 사용전 그리고 사용후 조건에서 방사선량을 분석하였다. 사용후 핵연료로 35,000 MWD/MTU의 표준 연소도와 50,000 MWD/MTU의 고 연소도을 사용하였고 선량률을 계산하기 위해 CANDU의 핵연료 집합체을 균등 혼합체로 가정 하였다. 조사선량율은 건식가공을 거치지 않았을 때 매우 높은 수치를 나타내었지만 건식가공을 한 후에는 많이 감소하개 됨 을 볼 수 있었다. 특히 Cs에 민감한 반응을 보였고 Cs을 100% 제거하였을 경우 전체 선량율이 약 90%가 줄어드는 결과를 얻었다. 아울러 사용후 DUPIC핵연료의 선량율도 건식가공 방법에 많은 영향을 받고 있다.

  • PDF

Sensitivity Analysis on Various Parameters for Lattice Analysis of DUPIC Fuel with WIMS-AECL Code

  • Gyuhong Roh;Park, Hangbok;Park, Jee-Won
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.64-69
    • /
    • 1997
  • The code WIMS-AECL has been used for the lattice analysis of DUPIC fuel. The lattice parameters calculated by the code is sensitive to the choice of number of parameters, such as the number of tracking lines, number of condensed groups, mesh spacing in the moderator region, other parameters vital to the calculation of probabilities and burnup analysis. We have studied this sensitivity with respect to these parameters and recommend their proper values which are necessary for carrying out the lattice analysis of DUPIC fuel.

  • PDF

Assessment of CANDU Adjuster System for DUPIC Fuel

  • Hari P. Gupta;Park, Hangbok;Bo W. Rhee;Park, Hyunsoo
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.257-262
    • /
    • 1996
  • The characteristics of adjuster rods have been studied for the application to DUPIC core in two aspects: the half an hour xenon override capability and power flattening. The transient analysis has shown that the adjusters used for CANDU 6 have the reactivity worths more than required to override xenon load for DUPIC core. Parametric study has shown that removing 7 adjuster rods in the middle row and adjusting the strength of the rest of adjuster rods can provide the performances no worse than those of natural uranium core.

  • PDF

COMPARISON OF CANDU DUPIC PHYSICS CODES WITH MCNP

  • Gyuhong Roh;Park, Hangbok
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.65-70
    • /
    • 1997
  • Computational benchmark calculations have been performed for CANDU DUPIC fuel lattice and core using a Monte Carlo code MCNP-4B with ENDF/B-V library. The eigenvalues of the DUPIC fuel lattice have been predicted by an integral transport code WIMS-AECL using ENDF/B-V library for different burnup steps and lattice conditions. The comparison has shown that the eigenvalues match those of MCNP-4B within 0.20% $\Delta$k difference between WIMS-AECL and MCNP-4B results. The calculation of a 2-dimensional CANDU core loaded with DUPIC fuel has shown that the eigenvalue predicted by a diffusion code RFSP using lattice parameters generated by WIMS-AECL matches that of MCNP-4B within 0.12%Δk and the largest bundle power prediction error is around 7.2%.

  • PDF

DUPIC 핵연료 보장조치용 중성자측정장치 개발

  • 이영길;차홍렬;나원우;홍종숙
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11b
    • /
    • pp.769-774
    • /
    • 1996
  • DUPIC 공정은 재처리공정과는 달리 공정의 전ㆍ후를 통하여 사용후핵연료의 양이 변하지 않기 때문에 시설이 원활히 운전되기 위해서는 사용후핵연료가 결손 또는 전용되지 않았음을 증명할 수 있어야 한다. 따라서, 핵투명성(nuclear transparency)을 보장할 수 있는 DUPIC 핵연료 보장조치용 비파괴측정 장치의 개발이 요구되었으며 $^3$He tube, 폴리에칠렌(CH$_2$)감속재, 텅스텐 차폐체 그리고 PSR(portable shift register) 등으로 구성된 측정 시스템을 제작하였다. 본 장치를 사용하여 사용후핵연료에서 검출되는 중성자중에서, $^{244}$ Cm의 자발핵분열중성자 수를 분석할 수 있으며 이를 이용하여 사용후핵연료를 계량관리 할 수 있다. 현재 측정시스템에 대한 성능시험등을 수행하고 있는 중이며 향후 DUPIC 연구용 고준위방사성물질취급시설(hot-cell)에 설치할 예정이다.

  • PDF