• Title/Summary/Keyword: DTV antenna

Search Result 45, Processing Time 0.019 seconds

An EDOCR with a Feedback Interference Canceller for the ATSC Terrestrial DTV System (ATSC 지상파 DTV 시스템을 위한 궤환간섭 제거기를 가지는 EDOCR)

  • Park, Sung-Ik;Lee, Young-Jun;Suh, Ki-Hwan;Eum, Ho-Min;Seo, Jae-Hyun;Kim, Heung-Mook;Kim, Hyoung-Nam
    • Journal of Broadcast Engineering
    • /
    • v.15 no.6
    • /
    • pp.830-844
    • /
    • 2010
  • In this paper, we propose an equalization digital on-channel repeater (EDOCR) with a feedback interference canceller (FIC) for single frequency network of the ATSC terrestrial DTV system. The proposed EDOCR with FIC does not have only high output power by cancelling feedback signals caused by insufficient antenna isolation through the FIC, but also shows better quality of output signals than the conventional on-channel repeaters (OCRs) by removing multipath signals existing between the main transmitter and the OCR, and residual feedback signals through an equalizer. In addition, computer simulations are provided to figure out the superior performance of the proposed EDOCR with FIC.

Study on Improvement of DTV Signal Reception Performance Using New Mobile Channel Modelling and Estimation Algorithm (새로운 이동 채널 모델 및 추정 알고리즘을 이용한 이동 DTV 수신 성능 개선에 관한 연구)

  • Lee, Chong-Hyun;Kim, Kwang-Ho;Kim, Kwang-Ho;Cha, Jae-Sang
    • Journal of Broadcast Engineering
    • /
    • v.11 no.4 s.33
    • /
    • pp.521-532
    • /
    • 2006
  • Recently, many research initiatives have been underway to improve reception performance of ATSC based DTV signal in mobile channel by adopting multiple antennas. In this paper, we propose a new mobile channel model which can be applicable to any array geometry. And then we propose new channel estimation algorithm which uses PN5l1 sequence in field synch. The proposed algorithm is to estimate channel by correlating the input signal in If frequency band and finding maximum peak, which does not need complicated synchronization circuit. Finally, we propose new receiver structures which can be implemented at the front-end of the existing receiver with no modification. With computer simulation, we verify the performance of the proposed model and verify the performance of the receiver structure with computer simulation.

Analysis on Co-channel Interference Coverage of ATSC DTV (ATSC DTV에서 동일채널간섭 커버리지에 대한 분석)

  • Ryu, Kwanwoong;Park, Sung Ik;Kim, Heung Mook
    • Journal of Broadcast Engineering
    • /
    • v.18 no.1
    • /
    • pp.59-65
    • /
    • 2013
  • Recently, the digital television transition from analog television to digital television has been progressing in terrestrial broadcasting. As a result of the DTV transition, additional reassignments and deployments of TV White spaces (TVWS) caused by co-channel interference (CCI) were needed. In this paper, we investigate the TVWS caused by CCI using Longley-Rice and ITU-R P.1546 propagation model, which are the most widely-used propagation model. In addition, we analyze the service coverage radius and CCI radius according to the height of transmitter antenna and transmitting power. The results show that the ratios of CCI radius to service coverage radius in Longley-Rice and ITU-R P.1546 propagation model are about 2.54 and 2.07, respectively.

An Enhanced Approach for a Prediction Method of the Propagation Characteristics in Korean Environments at 781 MHz

  • Jung, Myoung-Won;Kim, Jong Ho;Choi, Jae Ick;Kim, Joo Seok;Kim, Kyungseok;Pack, Jeong-Ki
    • ETRI Journal
    • /
    • v.34 no.6
    • /
    • pp.911-921
    • /
    • 2012
  • In high-speed wireless communications, an analysis of the propagation characteristics is an important process. Information on the propagation characteristics suitable for each environment significantly helps in the design of mobile communications. This paper presents the analysis results of radio propagation characteristics in outdoor environments for a new mobile wireless system at 781 MHz. To avoid the interference of Korean DTV broadcasting, we measure the channel characteristics in urban, suburban, and rural areas on Jeju Island, Republic of Korea, using a channel sounder and $4{\times}4$ antenna. The path loss (PL) measurement results differ from those of existing propagation models by more than 10 dB. To analyze the frequency characteristics for Korean propagation environments, we derive various propagation characteristic parameters: PL, delay spread, angular spread, and K-factor. Finally, we verify the validity of the measurement results by comparing them with the actual measurement results and 3D ray-tracing simulation results.

Effects of Feedback Signals on DTV Repeaters (DTV 중계기의 궤환신호의 영향)

  • Kang, Sang-Gee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.10
    • /
    • pp.1737-1743
    • /
    • 2006
  • OCR(On channel repeater) provides the high frequency reuse efficiency for allocating frequency bands to repeaters because the frequency of input and output signals of OCRs is the same. However the oscillation probability of OCRs is high due to the same input and output frequency. In order to prevent a repeater from oscillating, we must keep the antenna isolation higher than the gain of the repeater with a some margin. In this paper we simulated the effects of the amplitude, phase and time delay of feedback signals (m the characteristics of non-regeneration OCR. Simulation results show that the highest probability of oscillation is occurred when the gain of a repeater is the same value of the isolation. From the simulation results, we know that the phase of feedback signals can be adjusted to reduce the possibility of oscillation if a non-regeneration repeater has a narrow operation bandwidth or a signal bandwidth is narrow. As the time delay increases, the probability of oscillation and the fluctuation of gain over a certain frequency band increase also. The effects of the amplitude and phase of feedback signals on S/N of 8-VSB signal for generation and non-generation repeater were tested. The measured results show that the set-top can receive 8-VSB signal when the received signal power is $17{\sim}18dB$ higher than the noise power. When the isolation is almost same as the gain of the repeater, then the set-top can not receive 8-VSB signals due to the oscillation of the repeater. And the phase of feedback signals affects S/N at the output of the repeater when the isolation is $11.75{\sim}13.75dB$ larger than the gain of the repeater. In this case the set-top can not receive 8-VSB signal of at $48^{\circ}\;and\;347^{\circ}$ of the phase of feedback signals. However the phase of feedback signals can not affect the S/N of 8-VSB signals of the generation repeater because of the demodulation and modulation process of the generation repenter. The set-top can not receive 8-VSB signals when the amplitude of feedback signals is $12.6{\sim}13.6dB$ larger than the wanted signal power at the input port of the repeater. It's because that the amplitude of feedback signals saturates the front end of the repeater.