• Title/Summary/Keyword: DTN Cluster

Search Result 5, Processing Time 0.018 seconds

Deployment and Performance Analysis of Data Transfer Node Cluster for HPC Environment (HPC 환경을 위한 데이터 전송 노드 클러스터 구축 및 성능분석)

  • Hong, Wontaek;An, Dosik;Lee, Jaekook;Moon, Jeonghoon;Seok, Woojin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.9
    • /
    • pp.197-206
    • /
    • 2020
  • Collaborative research in science applications based on HPC service needs rapid transfers of massive data between research colleagues over wide area network. With regard to this requirement, researches on enhancing data transfer performance between major superfacilities in the U.S. have been conducted recently. In this paper, we deploy multiple data transfer nodes(DTNs) over high-speed science networks in order to move rapidly large amounts of data in the parallel filesystem of KISTI's Nurion supercomputer, and perform transfer experiments between endpoints with approximately 130ms round trip time. We have shown the results of transfer throughput in different size file sets and compared them. In addition, it has been confirmed that the DTN cluster with three nodes can provide about 1.8 and 2.7 times higher transfer throughput than a single node in two types of concurrency and parallelism settings.

Designing and building a DTN cluster based on massively scalable storage (대용량 스토리지 기반의 데이터 전송 노드 클러스터 설계 및 구축)

  • Hong, Wontaek;An, Dosik;Lee, Jaekook
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.05a
    • /
    • pp.63-65
    • /
    • 2020
  • 과학응용분야의 원활한 협업 지원을 위해서는 원거리간 대용량 연구데이터의 고속 전송이 반드시 요구된다. 이와 관련하여, 본 논문은 기 구축된 대용량 파일 시스템을 다수의 데이터 전송 노드(DTN)에 연동하기 위해 필요한 요구사항들을 정리하고, 이에 기반하여 DTN 클러스터를 설계하고 구축한 사례를 제시한다. 추가적으로, 종단간 왕복지연 시간이 약 130ms에 달하는 원거리 종단 포인트와 대용량 실험데이터를 송수신함으로써 구축된 결과물의 전송 성능을 측정하고 확인한다.

Delay Tolerant Packet Forwarding Algorithm Based on Location Estimation for Micro Aerial Vehicle Networks

  • Li, Shiji;Hu, Guyu;Ding, Youwei;Zhou, Yun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1377-1399
    • /
    • 2020
  • In search and rescue mission, micro aerial vehicles (MAVs) are typically used to capture image and video from an aerial perspective and transfer the data to the ground station. Because of the power limitation, a cluster of MAVs are required for a large search area, hence an ad-hoc wireless network must be maintained to transfer data more conveniently and fast. However, the unstable link and the intermittent connectivity between the MAVs caused by MAVs' movement may challenge the packet forwarding. This paper proposes a delay tolerant packet forwarding algorithm based on location estimation for MAV networks, called DTNest algorithm. In the algorithm, ferrying MAVs are used to transmit data between MAVs and the ground station, and the locations of both searching MAVs and ferrying MAVs are estimated to compute the distances between the MAVs and destination. The MAV that is closest to the destination is selected greedy to forward packet. If a MAV cannot find the next hop MAV using the greedy strategy, the packets will be stored and re-forwarded once again in the next time slot. The experiment results show that the proposed DTNest algorithm outperforms the typical DTNgeo algorithm in terms of packet delivery ratio and average routing hops.

Context-aware Connectivity Analysis Method using Context Data Prediction Model in Delay Tolerant Networks (Delay Tolerant Networks에서 속성정보 예측 모델을 이용한 상황인식 연결성 분석 기법)

  • Jeong, Rae-Jin;Oh, Young-Jun;Lee, Kang-Whan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.4
    • /
    • pp.1009-1016
    • /
    • 2015
  • In this paper, we propose EPCM(Efficient Prediction-based Context-awareness Matrix) algorithm analyzing connectivity by predicting cluster's context data such as velocity and direction. In the existing DTN, unrestricted relay node selection causes an increase of delay and packet loss. The overhead is occurred by limited storage and capability. Therefore, we propose the EPCM algorithm analyzing predicted context data using context matrix and adaptive revision weight, and selecting relay node by considering connectivity between cluster and base station. The proposed algorithm saves context data to the context matrix and analyzes context according to variation and predicts context data after revision from adaptive revision weight. From the simulation results, the EPCM algorithm provides the high packet delivery ratio by selecting relay node according to predicted context data matrix.

Analysis of Pollutant Characteristics in Nakdong River using Confirmatory Factor Modeling (확인적 요인모형을 이용한 낙동강 유역의 오염특성 분석)

  • Kim, Mi-Ah;Kang, Taegu;Lee, Hyuk;Shin, Yuna;Kim, Kyunghyun
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.84-93
    • /
    • 2012
  • The study was conducted to analyze the spatio-temporal changes in water quality of the major 36 sampling stations of Nakdong River, depending on each station, season using the 17 water quality variables from 2000 to 2010. The result was verified to interpret the characteristics of water quality variables in a more accurate manners. According to the Principal component analysis (PCA) and Exploratory factor analysis (EFA) results; the results of these analyses were identified 4 factors, Factor 1 (nutrients) included the concentrations of T-N, T-P, $NO_{3}-N$, $PO_{4}-P$, DTN, DTP for sampling station and season, Factor 2 (organic pollutants) included the concentrations of BOD, COD, Chl-a, Factor 3 (microbes) included the concentrations of F.Coli, T.Coli, and Factor 4 (others) included the concentrations of pH, DO. The results of a Cluster analysis indicated that Geumhogang 6 was the most contaminated site, while tributaries and most of the down stream sites of Nakdong River were mainly affected by each nutrients (Factor 1) and organic pollutants (Factor 2). The verification consequence of Confirmatory factor analysis (CFA) from Exploratory factor analysis (EFA) result can be summarized as follows: we could find additional relations between variables besides the structure from EFA, which we obtained through the second-order final modeling adopted in CFA. Nutrients had the biggest impact on water pollution for each sampling station and season. In particular, It was analyzed that P-series pollutant should be controlled during spring and winter and N-series pollutant should be controlled during summer and fall.