• Title/Summary/Keyword: DTA

Search Result 956, Processing Time 0.026 seconds

CO2 Decomposition Characteristics of Activated(Fe1-xMnx)3O4-δ and (Fe1-xCox)3O4-δ (활성화된(Fe1-xMnx)3O4-δ과 (Fe1-xCox)3O4-δ의 이산화탄소 분해 특성)

  • Park, Won-Shik;Oh, Kyoung-Hwan;Rhee, Sang-In;Suhr, Dong-Soo
    • Korean Journal of Materials Research
    • /
    • v.23 no.4
    • /
    • pp.219-226
    • /
    • 2013
  • Activated magnetite ($Fe_3O_{4-{\delta}}$) has the capability of decomposing $CO_2$ proportional to the ${\delta}$-value at comparatively low temperature of $300^{\circ}C$. To enhance the $CO_2$ decomposition capability of $Fe_3O_{4-{\delta}}$, $(Fe_{1-x}Co_x)_3O_{4-{\delta}}$ and $(Fe_{1-x}Mn_x)_3O_{4-{\delta}}$ were synthesized and then reacted with $CO_2$. $Fe_{1-x}Co_xC_2O_4{\cdot}2H_2O$ powders having Fe to Co mixing ratios of 9:1, 8:2, 7:3, 6:4, and 5:5 were synthesized by co-precipitation of $FeSO_4{\cdot}7H_2O$ and $CoSO_4{\cdot}7H_2O$ solutions with a $(NH_4)_2C_2O_4{\cdot}H_2O$ solution. The same method was used to synthesize $Fe_{1-x}Mn_xC_2O_4{\cdot}2H_2O$ powders having Fe to Mn mixing ratios of 9:1, 8:2, 7:3, 6:4, 5:5 with a $MnSO_4{\cdot}4H_2O$ solution. The thermal decomposition of synthesized $Fe_{1-x}Co_xC_2O_4{\cdot}2H_2O$ and $Fe_{1-x}Mn_xC_2O_4{\cdot}2H_2O$ was analyzed in an Ar atmosphere with TG/DTA. The synthesized powders were heat-treated for 3 hours in an Ar atmosphere at $450^{\circ}C$ to produce activated powders of $(Fe_{1-x}Co_x)_3O_{4-{\delta}}$ and $(Fe_{1-x}Mn_x)_3O_{4-{\delta}}$. The activated powders were reacted with a mixed gas (Ar : 85 %, $CO_2$ : 15 %) at $300^{\circ}C$ for 12 hours. The exhaust gas was analyzed for $CO_2$ with a $CO_2$ gas analyzer. The decomposition of $CO_2$ was estimated by measuring $CO_2$ content in the exhaust gas after the reaction with $CO_2$. For $(Fe_{1-x}Mn_x)_3O_{4-{\delta}}$, the amount of $Mn^{2+}$ oxidized to $Mn^{3+}$ increased as x increased. The ${\delta}$ value and $CO_2$ decomposition efficiency decreased as x increased. When the ${\delta}$ value was below 0.641, $CO_2$ was not decomposed. For $(Fe_{1-x}Co_x)_3O_{4-{\delta}}$, the ${\delta}$ value and $CO_2$ decomposition efficiency increased as x increased. At a ${\delta}$ value of 0.857, an active state was maintained even after 12 hours of reaction and the amount of decomposed $CO_2$ was $52.844cm^3$ per 1 g of $(Fe_{0.5}Co_{0.5})_3O_{4-{\delta}}$.

The immunogenicity and reactogenicity of Td booster vaccination in Korean preadolescents, aged with 11-12 years old (국내 11-12세 소아에서 Td 백신 추가접종의 면역원성과 안전성 평가)

  • Lee, Soo Young;Kwak, Ga Young;Mok, Hye Rin;Kim, Jong Hyun;Hur, Jae Kyun;Lee, Kyung Il;Park, Joon Su;Ma, Sang Hyuk;Kim, Hwang Min;Kang, Jin Han
    • Clinical and Experimental Pediatrics
    • /
    • v.51 no.11
    • /
    • pp.1185-1190
    • /
    • 2008
  • Purpose : This study was undertaken to evaluate the immunogenicity and reactogenicity of Td booster immunization in early preadolescents of Korea. Methods : Healthy preadolescents, who had been vaccinated with 4 or 5 doses of DTaP vaccines until 6 years old age, were enrolled in this study from August 2006 to April 2007. Diphtheria and tetanus anti-toxoid antibodies in sera were measured by ELISA just before vaccination and 4 weeks after vaccination to evaluate immunogenicity. Local and systemic adverse reactions observed for 4 weeks after vaccination to access reactogenicity. Results : 183 preadolescents were enrolled and mean age was $11.40{\pm}0.51$ years old. All subjects achieved seroprotective diphtheria and tetanus anti-toxoid antibodies (titers ${\geq}0.1IU/mL$) after Td booster vaccination. Among 183 vaccinees, 73.8% showed local adverse reactions and 37.2% systemic adverse reactions. Pain at injection site (66.1%) was the most common local reaction, and the most commonly shown systemic reaction was myalgia (17.5%). The adverse reactions were spontaneously relieved within three days after vaccination. Conclusion : Td vaccine in this study was high immunogenic and showed an acceptable tolerance in Korean preadolescents. Td booster vaccination at 11-12 years old is the most effective method to increase compliance of the vaccination and to decrease the incidence of diphtheria and tetanus.

Chimooite, a New Mineral from Dongnam Mine, Korea (동남광산에서 발견된 신종광물 Zn­란시아이트(치무석))

  • 최헌수;김수진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.333-339
    • /
    • 2003
  • A new mineral, Zn analogue of rancieite (Chimooite), has been discovered at the Dongnam mine, Korea. It occurs as compact subparallel fine­grained flaky or acicular aggregates in the massive manganese oxide ores which were formed by supergene oxidation of rhodochrosite­sulfide ores in the hydrothermal veins trending NS­N25E and cutting the Pungchon limestone of the Cambrian age. The flakes of chimooite are 0.2 mm for the largest one, but usually less than 0.05 mm. The acicular crystals are elongated parallel to and flattened on (001). This mineral shows gradation to rancieite constituting its marginal part, thus both minerals are found in one and the same flake. Color is bluish black, with dull luster and brown streak in globular or massive aggregates. Cleavage is perfect in one direction. The hardness ranges from 2.5 to 4. Under reflected light it is anisotropic and bireflectant. It shows reddish brown internal reflection. Chemical analyses of different parts of both minerals suggest that rancieite and chimooite constitute a continuous solid solution series by cationic substitution. The empirical chemical formula for chimooite has been calculated following the general formula, $R_2_{x}$ M $n^{4+}$$_{9­x}$ $O_{18}$ $.$n$H_2O$ for the 7 $\AA$ phyllomanganate minerals, where x varies from 0.81 to 1.28 in so far studied samples, thus averaging to 1.0. Therefore, the formula of Zn­rancieite is close to the well­known strochiometric formula $_Mn_4^{4+}$ $O_{9}$ $.$4$H_2O$. The mineral has the formula (Z $n_{0.78}$N $a_{0.15}$C $a_{0.08}$M $g_{0.01}$ $K_{0.01}$)(M $n^{4+}$$_{3.98}$F $e^{3+}$$_{0.02}$)$_{4.00}$ $O_{9}$ $.$3.85$H_2O$, thus the ideal formula is (Zn,Ca)M $n^{4+}$$_4$ $O_{9}$ $.$3.85$H_2O$. The mineral has a hexagonal unit ceil with a=2.840 $\AA$ c=7.486 $\AA$ and a : c = 1 : 2.636. The DTA curve shows endothermic peaks at 65, 180, 690 and 102$0^{\circ}C$. The IR absorption spectrum shows absorption bands at 445, 500, 1630 and 3400 c $m^{1}$. The mineral name Chimooite has been named in honour of late Prof, Chi Moo Son of Seoul National University.ity.versity.ity.y.

Valuation of Mining Investment Projects by the Real Option Approach - A Case Study of Uzbekistan's Copper Mining Industry - (실물옵션평가방법에 의한 광산투자의 가치평가 -우즈베키스탄 구리광산업의 사례연구를 중심으로-)

  • Makhkamov, Mumm Sh.;Kim, Dong-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.6
    • /
    • pp.1634-1647
    • /
    • 2007
  • "To invest or not to invest?" Most business leaders are frequently faced with this question on new and ongoing projects. The challenge lies in deciding what projects to choose, expand, contract, defer, or abandon. The project valuation tools used in this process are vital to making the right decisions. Traditional tools such as discounted cash flow (DCF)/net present value (NPV) assume a "fixed" path ahead, but real world projects face uncertainties, forcing us to change the path often. Comparing to other traditional valuation methods, the real options approach captures the flexibility inherent to investment decisions. The use of real options has gained wide acceptance among practitioners in a number of several industries during the last few decades. Even though the options are present in all types of business decisions, it is still not considered as a proper method of valuation in some industries. Mining has been comparably slow to adopt new valuation techniques over the years. The reason fur this is not entirely clear. One possible reason is the level and types of risks in mining. Not only are these risks high, but they are also more numerous and involve natural risks compared with other industries. That is why the purpose of this study is to deal with a more practical approach to project valuation, known as real options analysis in mining industry. This paper provides a case study approach to the copper mining industry using a real options analysis. It shows how companies can minimize investment risks, exercise flexibility in decision making and maximize returns.

  • PDF

Experimental Investigation of Stannite-Sphalerite System In Relation to Ores (황석석일섬아연석계(黃錫石一閃亞鉛石系)의 실험연구(實驗硏究)와 천연건물(天然鍵物)에의 활용(活用))

  • Lee, Jae Yeong
    • Economic and Environmental Geology
    • /
    • v.8 no.1
    • /
    • pp.1-23
    • /
    • 1975
  • The subject of this study deals with phase relations between stannite ($Cu_2FeSnS_4$) and sphalerite (${\beta}-ZnS$)/wurtzite (${\alpha}-ZnS$). The phase relations were systematically investigated from liquidus temperature to $400^{\circ}C$ under controlled conditions. ${\beta}-stannite$ (tetragonal) is stable up to $706{\pm}5^{\circ}C$, where it inverts to a high-temperature polymorph ${\alpha}-stannite$ (cubic) melting congruently at $867{\pm}5^{\circ}C$. Sphalerite (cubic, ${\beta}-ZnS$) inverts at $1013{\pm}3^{\circ}C$ to wurtzite, which is the hexagonal hightemperature polymorph of ZnS. Between ${\alpha}-stannite$ and sphalerite a complete solid solution series exists above approximately $870^{\circ}C$ up to solidus temperature. The melting temperature of ${\alpha}-stannite$ rises towards sphalerite and reaches a maximum at $1074{\pm}3^{\circ}C$, which is the peritectic with the composition of 91 wt. % sphalerite and 9 wt. % ${\alpha}-stannite$. At this temperature, wurtzite takes only 5wt. % ${\alpha}-stannite$ in solid solution which decreases with increasing temperature. The inverson temperature of ${\alpha}/{\beta}-stannite$ is lowered with increasing amounts of sphalerite in solid solution down to $614{\pm}7^{\circ}C$, which is the eutectoid with the composition of 13 wt. % sphalerite and 87 wt. % ${\alpha}-stannite$. Here, ${\beta}-stannite$ contains only 10wt. % sphalerite in solid solution. With decreasing temperature, the ranges of the solid solution on both sides of the system narrow. The phase relations in the above pure system changed due to the FeS impurities in the sphalerite solid solution. The eutectoid increased from $614{\pm}7^{\circ}C$ up to $695{\pm}5^{\circ}C$ (5 wt. % FeS) and $700{\pm}5^{\circ}C$ (10wt. % FeS), while the peritectic decreased from $1074{\pm}3^{\circ}C$ down to $1036{\pm}3^{\circ}C$ (wt. %FeS) and $987{\pm}3^{\circ}C$ (10wt. %FeS). A most notable change is the appearance of non-binary regions. An important feature is the combination of this study system with the experimental results reported by Sprinfer (1972). If a stannite-kesterite solid solution is used in the place of stannite as a bulk composition, the inversion temperature is lowered to less than $400^{\circ}C$ which belongs to temperatures of the hydrothermal region.

  • PDF

Janggunite, a New Mineral from the Janggun Mine, Bonghwa, Korea (경북(慶北) 봉화군(奉化郡) 장군광산산(將軍鑛山産) 신종광물(新種鑛物) 장군석(將軍石)에 대(對)한 광물학적(鑛物學的) 연구(硏究))

  • Kim, Soo Jin
    • Economic and Environmental Geology
    • /
    • v.8 no.3
    • /
    • pp.117-124
    • /
    • 1975
  • Wet chemical analysis (for $MnO_2$, MnO, and $H_2O$(+)) and electron microprobe analysis (for $Fe_2O_3$ and PbO) give $MnO_2$ 74.91, MnO 11.33, $Fe_2O_3$ (total Fe) 4.19, PbO 0.03, $H_2O$ (+) 9.46, sum 99.92%. 'Available oxygen determined by oxalate titration method is allotted to $MnO_2$ from total Mn, and the remaining Mn is calculated as MnO. Traces of Ba, Ca, Mg, K, Cu, Zn, and Al were found. Li and Na were not found. The existence of (OH) is verified from the infrared absorption spectra. The analysis corresponds to the formula $Mn^{4+}{_{4.85}}(Mn^{2+}{_{0.90}}Fe^{3+}{_{0.30}})_{1.20}O_{8.09}(OH)_{5.91}$, on the basis of O=14, 'or ideally $Mn^{4+}{_{5-x}}(Mn^{2+},Fe^{3+})_{1+x}O_{8}(OH)_{6}$ ($x{\approx}0.2$). X-ray single crystal study could not be made because of the distortion of single crystals. But the x-ray powder pattern is satisfactorily indexed by an orthorhombic cell with a 9.324, b 14.05, c $7.956{\AA}$., Z=4. The indexed powder diffraction lines are 9.34(s) (100), 7.09(s) (020), 4.62(m) (200, 121), 4.17(m) (130), 3.547(s) (112), 3.212(vw) (041), 3.101(s) (300), 2.597(w) (013), 2.469(m) (331), 2.214(vw)(420), 2.098(vw) (260), 2.014 (vw) (402), 1.863(w) (500), 1.664(w) (314), 1.554(vw) (600), 1.525(m) (601), 1.405(m) (0.10.0). DTA curve shows the endothermic peaks at $250-370^{\circ}C$ and $955^{\circ}C$. The former is due to the dehydration: and oxidation forming$(Mn,\;Fe)_2O_3$(cubic, a $9.417{\AA}$), and the latter is interpreted as the formation of a hausmannite-type oxide (tetragonal, a 5.76, c $9.51{\AA}$) from $(Mn,\;Fe)_2O_3$. Infrared absorption spectral curve shows Mn-O stretching vibrations at $515cm^{-1}$ and $545cm^{-1}$, O-H bending vibration at $1025cm^{-1}$ and O-H stretching vibration at $3225cm^{-1}$. Opaque. Reflectance 13-15%. Bireflectance distinct in air and strong in oil. Reflection pleochroism changes from whitish to light grey. Between crossed nicols, color changes from yellowish brown with bluish tint to grey in air and yellowish brown to grey through bluish brown in oil. No internal reflections. Etching reactions: HCl(conc.) and $H_2SO_4+H_2O_2$-grey tarnish; $SnCl_2$(sat.)-dark color; $HNO_3$(conc.)-grey color; $H_2O_2$-tarnish with effervescence. It is black in color. Luster dull. Cleavage one direction perfect. Streak brownish black to dark brown. H. (Mohs) 2-3, very fragile. Specific gravity 3.59(obs.), 3.57(calc.). It occurs as radiating groups of flakes, flower-like aggregates, colloform bands, dendritic or arborescent masses composed of fine grains in the cementation zone of the supergene manganese oxide deposits of the Janggun mine, Bonghwa-gun, southeastern Korea. Associated minerals are calcite, nsutite, todorokite, and some undetermined manganese dioxide minerals. The name is for the mine, the first locality. The mineral and name were approved before publication by the Commission on New Minerals and Mineral Names, I.M.A.

  • PDF