• 제목/요약/키워드: DSP-based control scheme

검색결과 99건 처리시간 0.021초

영구자석 동기전동기의 강인 비선형 속도제어기의 설계 및 DSP에 기반한 구현 (Design and DSP-based Implementation of Robust Nonlinear Speed Control of Permanent Magnet Synchronous Motor)

  • 백인철;김경화;윤명중
    • 전력전자학회논문지
    • /
    • 제4권1호
    • /
    • pp.1-12
    • /
    • 1999
  • 파라미터 변동이나 외란에 강인한 영구자석 동기전동기의 궤환선형화 속도제어기를 설계하고 DSP를 이용하여 실험 시스템을 구현하였다. 시스템의 상태변수에 비하여 매우 느리게 변화하는 파라미터의 추정을 위하여 MRAS를 이용한 추정방법이 MIT rule을 이용하여 유도되었다. 외란이나 시스템의 상태변수 정도의 변화를 보이는 피라미터에 대하여는 그영향이 고려된 준-선형화 비간섭 모델이 유도되었다. 이 모델을 이용하여 제어시스템의 강인성을 얻고자 경계층을 가지는 Sliding mode 제어기를 설계하고 PD 제어기를 적용한 기존의 제어기와 비교하였다. 제안된 제어 방법의 유용성은 Simulation과 DSP에 기반한 실험 시스템을 통하여 검증하였다.

3상 PWM AC-AC 부스트 컨버터의 DSP 기반 전류 프로그램 제어 (DSP-based Current Programmed Control of Three Phase PWM AC-AC Boost Converter)

  • 최남섭;이옥룡
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권1호
    • /
    • pp.27-32
    • /
    • 2006
  • In this paper, a new scheme of current programmed control for three phase PWM AC-AC converter is presented. Compared to duty-ratio voltage control, current programmed control has several advantages such as reduction of system order, inherent current protection and robust output. By considering only the magnitude components, a similar scheme in the DC-DC converter can be extended to the three phase PWM AC-AC converter. The proposed current programmed control will be well adopted into various converter topologies though three phase PWM AC-AC boost converter is treated as an example. The converter analysis is carried out by applying the vector DQ transformation to obtain physical insight into the converter operation and to establish some important characteristic equations for control purpose. The experiment results show the validity of the proposed scheme.

Synthesis and Experimental Implementation of DSP Based Backstepping Control of Positioning Systems

  • Chang, Jie;Tan, Yaolong
    • Journal of Power Electronics
    • /
    • 제7권1호
    • /
    • pp.1-12
    • /
    • 2007
  • Novel nonlinear backstepping control with integrated adaptive control function is developed for high-performance positioning control systems. The proposed schemes are synthesized by a systematic approach and implemented based on a modern low-cost DSP controller, TMS320C32. A baseline backstepping control scheme is derived first, and is then extended to include a nonlinear adaptive control against the system parameter changes and load variations. The backstepping control utilizes Lyapunov function to guarantee the convergence of the position tracking error. The final control algorithm is a convenient in the implementation of a practical 32-bit DSP controller. The new control system can achieve superior performance over the conventional nested PI controllers, with improved position tracking, control bandwidth, and robustness against external disturbances, which is demonstrated by experimental results.

DSP Based Control of Interleaved Boost Converter

  • Sudhakarababu C.;Veerachary Mummadi
    • Journal of Power Electronics
    • /
    • 제5권3호
    • /
    • pp.180-189
    • /
    • 2005
  • In this paper a DSP based control scheme for the interleaved boost converter is presented. The mathematical model for the interleaved boost converter operating in a continuous inductor current mode is developed. A state-space averaging technique is used for modeling the converter system. A fixed frequency sliding mode controller is designed to ensure current distribution between the two converter modules and to achieve the load voltage regulation simultaneously. Necessary and sufficient conditions, using variable structure theory, are derived for the sliding mode to exist. The range of sliding mode controller coefficients is also determined. The designed controller capability, load distribution among the individual boost cells and load voltage regulation against source and load disturbances, are demonstrated through PSIM simulation results. A real-time controller based on ADMC401 DSP is developed. Experimental results are provided to validate the proposed control scheme.

서보 드라이브 성능 향상을 위한 AC 서보 전동기의 적응형 전류 제어 (An Adoptive Current Control Scheme of an AC Servo Motor for Performance Improvement of a Servo Drive)

  • 김경화
    • 조명전기설비학회논문지
    • /
    • 제20권6호
    • /
    • pp.96-103
    • /
    • 2006
  • 서보 드라이브의 성능 향상을 위해 AC 서보 전동기의 MRAC (Model Reference Adaptive Control) 기반 적응 전류 제어 기법이 제시된다. 인버터 구동 전류 제어 기법 중 예측형 전류 제어 기법은 이상적인 과도 응답 및 정상 상태 응답을 주지만, 전동기 파라미터 변화 시 정상상태 응답 성능이 저하된다. 이러한 제한 점을 극복하기 위해 파라미터 변화에 의한 외란이 MRAC 기법에 의해 추정되어 전향 제어에 의해 보상된다. 제안된 방식은 기존의 외란 추정 방식과 달리 관측기 구성을 위한 인버터의 상전압 측정을 필요로 하지 않는다. 제안된 적응 제어 방식의 점근안정성과 효과적으로 서보 드라이브에 적용될 수 있음이 입증된다. 제안된 방식이 DSP TMS320C31을 이용하여 구현되고 유용성이 시뮬레이션과 실험을 통해 입증된다.

유도전동기의 소음저감을 위한 DSP기반 PWM인버터의 랜덤 캐리어 주파수 변조기법의 구현 (Implementation of Random Carrier-Frequency Modulation Scheme for a DSP based PWM Inverter for Acoustic Noise Reduction of Induction Motors)

  • 정영국;나석환;임영철;정성기
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제52권12호
    • /
    • pp.608-615
    • /
    • 2003
  • This paper describes an implementation of a DSP (Digital Signal Processor) controlled random carrier frequency modulation for the PWM inverter for acoustic noise reduction of induction motors. Real-time generation of the random variable and RPWM(Random PWM) along with the speed control was achieved by DSP TMS320C31. The experimental results show that the voltage and current harmonics are spread to a wide band area and the power spectrum of the acoustic switching noise was spread to create a more appealing, less annoying sound. Also, the speed response of the implemented method and the conventional method is nearly similar to each other from the viewpoint of the v/f constant control.

DSP-based Robust Nonlinear Speed Control of PM Synchronous Motor Using Adaptive and Sliding Mode Control Techniques

  • Baik, In-Cheol;Kyeong-Hwa;Kwan-Yuhl;Youn, Myung-Joong
    • Journal of Electrical Engineering and information Science
    • /
    • 제3권2호
    • /
    • pp.251-260
    • /
    • 1998
  • A DSP-based robust nonlinear speed control of a permanent magnet synchronous motor(PMSM) which is robust to unknown parameter variations and speed measurement error is presented. The model reference adaptive system(MRAS) based adaptation mechanisms for the estimation of slowly varying parameters are derived using the Lyapunov stability theory. For the disturbances or quickly varying parameters. a quasi-linearized and decoupled model including the influence of parameter variations and speed measurement error on the nonlinear speed control of a PMSM is derived. Based on this model, a boundary layer integral sliding mode controller to improve the robustness and performance of the nonlinear speed control of a PMSM is designed and compared with the conventional controller. To show the validity of the proposed control scheme, simulations and experimental works are carried out and compared with the conventional control scheme.

  • PDF

DSP-based Robust Nonlinear Speed Control of PM Synchronous Motor

  • Baik, In-Cheol;Kim, Kyeong-Hwa;Youn, Myung-Joong
    • Journal of Electrical Engineering and information Science
    • /
    • 제3권1호
    • /
    • pp.94-102
    • /
    • 1998
  • A DSP-based robust nonlinear speed control of a permanent magnet synchronous motor(PMSM) is presented. A quasi-linearized and decoupled model including the influence of parameter variations and speed measurement error on the nonlinear speed control of a PMSM is derived. Based on this model, a boundary layer integral sliding mode controller to improve the robustness and performance of the nonlinear speed control of a PMSM is designed and compared with the conventional controller. To show the validity of the proposed control scheme, simulations and experimental works are carried out and compared with the conventional control scheme.

  • PDF

DSP에 의한 PWM 인버터의 Real-Time Digital 제어 (Real-Time Digital Control of PWM Inverter Empolyed DSP)

  • 박가우;민완기;최재호;최성률
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 B
    • /
    • pp.724-727
    • /
    • 1993
  • This paper is presented real-time digital control techniques of the PWM inverter for UPS. This proposed system is based on instantaneous digital control scheme which is empolyed double dead beat control and prediction method. Especially, to supply the load current from the inverter without the computation delay, the predictive methods are used to generate the load current signal. From the simulation and experimental results, it is shown that presented scheme has good performance such as very low THD of the output voltage, and good dynamic response under the nonlinear load. The experimental implementation of the system is estabilished by using the TMS320C25 DSP.

  • PDF

DSP를 이용한 로보트 제어시스템 개발 (Development of robot control system using DSP)

  • 이보희;김진걸
    • 제어로봇시스템학회논문지
    • /
    • 제1권1호
    • /
    • pp.50-57
    • /
    • 1995
  • In this paper, the design and the implementation of the controller for an articulate robot, which is developed in our Automatic Control Laboratory, are mainly discussed. The controller reduces software computational load via distributed processing method using multiple CPU's, and simplifies structures by the time-division control with TMS320C31 DSP chip. The method of control is based on the fuzzy-compensated PID control with scale factor, which compensates for the influence of load variation resulting from the various postures of the robot with conventional PID scheme. The application of the proposed controller to the robot system with DC servo-motors shows some excellent control capabilities. Also, the response characteristics of system for the various trajectory commands verify the superiority of the controller.

  • PDF