• Title/Summary/Keyword: DSMC법

Search Result 5, Processing Time 0.015 seconds

Multiple Lapse Time Window Analysis of the Korean Peninsula Considering Focal Depth (진원 깊이를 고려한 한반도 다중지연시간창 해석)

  • Chung, Tae Woong;Rachman, Asep Nur
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.4
    • /
    • pp.293-299
    • /
    • 2013
  • The recent Multiple Lapse Time Window (MLTW) analysis of Korean Peninsula event showed that the focal depth was far greater influence factor than the velocity structure of the model, applying the analysis of the direct simulation Monte Carlo (DSMC) method. Thus, using the events with focal depth of about 10 km, this study considered 330 paths connecting 41 events and 71 stations, and re-examined uniform and depth-dependent velocity models previously studied. As a result, the residual of misfit function greatly decrease from analytic model to DSMC model, reflecting variation of the focal depth from 0 to 10 km. On the other hand, the difference of residuals for each velocity model were relatively small.

Analysis of two-dimensional flow fields in the multi-stage turbomolecular pump using the DSMC method (DSMC법을 이용한 터보분자펌프 다단 익렬의 2차원 유동장 해석)

  • 황영규;허중식;박종윤
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.1
    • /
    • pp.83-94
    • /
    • 2000
  • The performance of a turbomolecular pump(TMP) in both molecular and transition flow regions is predicted by the numerical solutions of the Boltzmann equation obtained by the direct simulation Monte Carlo method. The compression characteristics of the TMP are investigated for a wide range of the Knudsen number( Kn ). The maximum compression ratios strongly depend on Kn in transition region, while do they weakly on Kn in free molecular flow region. The present numerical results of the single blade row in both molecular and transition regions are used to predict the overall performance of a TMP, which has three kinds of blade with 24-rows.

  • PDF

A Study on the Pumping Performance of a Disk-type Drag Pump (원판형 드래그펌프의 배기특성에 관한 연구)

  • Hwang, Young-Kyu;Heo, Joong-Sik;Choi, Wook-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.860-869
    • /
    • 2000
  • Numerical and experimental investigations are performed for the molecular transition and slip flows in pumping channels of a disk-type drag pump. The flow occurring in the pumping channel develops from the molecular transition to the slip flow traveling downstream. Two different numerical methods are used in this analysis: the first one is a continuum approach in solving the Navier-Stokes equations with slip boundary conditions, and the second one is a stochastic approach through the use of the direct simulation Monte Carlo method. In the experimental study, the inlet pressures are measured for various outlet pressures in the range of 0.1{\sim}4Torr. From the present study, the numerical results of predicting the performance, obtained by both methods, agree well with the experimental data for the range of Knudsen number $Kn{\leq}0.1$ (i.e., the slip flow regime). But the results from the second method only agree with the experimental data for Kn>0.1(i.e., the molecular transition regime)

Multiple Lapse Time Window Analysis using Focal Mechanism (진원함수를 고려한 다중지연시간창 해석)

  • Chung, Tae-Woong;Yoshimoto, Kazuo
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.2
    • /
    • pp.85-91
    • /
    • 2012
  • Multiple Lapse Time Window (MLTW) analysis for obtaining intrinsic attenuation value require numerous data without directional bias to compensate focal mechanism. The first window of MLTW, therefore, shows large deviation in fitting smoothed theoretical curve. The information on the focal mechanism may reduce burdens of number and distribution. This study combined algorithm of computing focal mechanism to DSMC method by Yoshimoto (2000). However, the MLTW method based on the numerous data was not applicable to this study, because of the limited data to the almost same fault plane solution. This study showed that the available data was too insufficient to construct smoothed theoretical curve, although the deviation of the first window was improved. Instead of conventional solution by more data, the study seems to be needed for new constraints to obtain smoothed curve.

Comparative Study on Separation Method of Attenuation Quality Factor (감쇠상수 분리방법의 비교 분석)

  • Chung, Tae-Woong
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.4
    • /
    • pp.281-288
    • /
    • 2009
  • Using analytical method, intrinsic absorption and scattering attenuation was lately separated from total quality factor $(Q^{-1}_t)$ on the seismic data of Korean Peninsula. However, we should use numerical method rather than the analytical method to consider depth dependent structure of scattering. The direct simulation Monte Carlo (DSMC) method, as a kind of the numerical method, is good option due to its extended availability from 1 to 3-dimensional model; but there is few study to use it. In this paper, we introduced the analytical method and the DSMC method, and compared the results of the two analysis applied to the isotropic scattering model. While the scattering attenuation coefficients $(\eta_s)$ are identical, the intrinsic absorption coefficients $(\eta_i)$ for the analytical method are larger than those for DSMC method and have large errors. In addition, the $(Q^{-1}_t)$ by the previous studies show closer to DSMC method than analytical method.