• Title/Summary/Keyword: DSA (dimensionally stable anode)

Search Result 27, Processing Time 0.018 seconds

Electrochemical Characteristics of MnO2 Electrodes as a function of Manufacturing Process (제조공정에 따른 MnO2산화물 전극의 전기화학적 특성)

  • 김현식;이해연;허정섭;이동윤
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.5
    • /
    • pp.486-491
    • /
    • 2004
  • Dimensionally stable anode(DSA) can be used for the hydro-metallurgy of non-ferrous metals like as Zn, and the electrolysis of sea water. MnO$_2$ electrode satisfies the requirements of DSA, and has a good cycle life and a low overpotential for oxygen evolution. MnO$_2$ electrodes based on Ti matrix were prepared by using thermal decomposition method and also MnO$_2$ was coated on Ti and Pb matrix with DMF and PVDF compositions. The MnO$_2$ electrodes prepared by thermal decomposition method had very weak adhesive strength onto Ti matrix and MnO$_2$ layer was removed out so that electrochemical properties for MnO$_2$ were not investigated. The viscosity of solvent used as a binder of MnO$_2$ Powder increased with the increasing PVDF contents. The thickness of the MnO$_2$ layer on Pb matrix in DSA, which was prepared with 5 times dipping at the solution mixed with PVDF : DMF = 1 : 9, was 150${\mu}{\textrm}{m}$. When the ratio of PVDF to MnO$_2$ was lower than 1 : 6, the Pb electrode didn't show any reaction irrespective of the concentrations of DMF. However, When the ratio of PVDF to MnO$_2$ was higher than 1: 6, the Pb electrode showed constant current reactions and homogeneous cyclic voltammetry even though at a high cycle. The reason for the high current and homogeneous cyclic voltammetry is the good catalytic reactions of MnO$_2$ powder in electrode.

Preparation of binder-free IrO2-RuO2/TiO2 nanotube electrode for DSA application. (DSA 활용을 위한 바인더를 사용하지 않은 IrO2-RuO2/TiO2 나노튜브 전극 제조)

  • Yu, Hyeon-Seok;Choe, Jin-Seop
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.28-28
    • /
    • 2018
  • 수전해(electrochemical water splitting)는 연료전지의 가역적 역반응을 이용하여 물로부터 수소와 산소를 발생시키는 기술이다. 산소는 음극에서 발생하는데, 이 때 음극 표면은 고농도의 산소 음이온 및 라디칼에 장시간 노출된다. 때문에 기계적, 화학적 내구성이 우수한 전극재를 사용할 필요가 있다. 불용성 전극 (dimensionally stable anode, DSA)은 이러한 기술적 요구사항을 잘 만족하는 상용화 된 전극이다. 티타늄이나 티타늄 합금 표면에 촉매를 미량 반복 살포하여 산화물 형태의 매우 견고한 표면을 형성함으로서 내구성을 확보한다. 그러나, 보통 DSA 제조 기법의 특징에 따라 다공성 표면 구조를 사용하지는 않기 때문에 생산 과정이 복잡하고 비용이 많이 발생하는 문제를 여전히 나타내고 있다. 본 연구는 상기 문제를 개선하기 위한 수전해용 음극 제조 기술에 관한 연구이다. 티타늄과 티타늄 합금은 동일한 양극산화 기술 적용이 가능하다는 점을 이용하여 티타늄 기판으로부터 다공성 구조를 형성함으로써 바인더의 사용을 배제하였다. 단일공정양극산화기법 (single-step anodization)을 이용하여 $IrO_2$$RuO_2$를 도핑함으로써 TiO2에 촉매능을 부여하였다. 제조된 나노튜브들의 구조적 특징을 HR-TEM (High-resolution transmission electron microscope)과 FE-SEM (Field-emission scanning electron microscope)으로 분석하고 SAED (selective area electron diffraction) 패턴을 분석하여 전극재의 결정성을 확인하였다. 알칼라인 분위기에서 일으킨 산소발생반응 (oxygen evolution reaction, OER)의 LSV (linear sweep voltammetry) 결과를 XPS (X-ray photoelectron microscoscopy) 결과와 연관지어 촉매 표면 구조와 과전압의 관계를 해석하였다. LSV 결과로부터 Tafel 분석을 연달아 수행함으로써 전극의 속도결정단계를 정의하였다. 최종적으로 사이클 테스트 통하여 DSA로써의 성능을 평가하였다.

  • PDF

Effect of Ni addition on anodically deposited $MnO_2$ film (Anodic deposition된 $MnO_2$ 막에 있어서 Ni 첨가 영향)

  • Kim, Bong-Seo;Lee, Dong-Yoon;Lee, Hee-Woong;Chung, Won-Sub
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1535-1537
    • /
    • 2003
  • Manganese oxide electrode was designed to improve electrical conductivity for dimensionally stable anode(DSA) using discreet variation (DV)-X${\alpha}$ method. It was calculated in DV-X${\alpha}$ method that the addition of nickel to manganese oxide reduce the energy band gap of manganese oxide electrode. Therefore, it is estimated that nickel in 3 additive elements of Ti, Ni and Sn is the best candidate to improve the electrical conductivity of manganese oxide. The anodically deposited manganese oxide which was produced in 0.2M $MnSO_4$ and 0.2M (Mn,Ni)$SO_4$ solution had $MnSO_4$ structure which was identified by XRD. The $MnSO_4$ films produced in both solutions over than 50mA/$cm^2$ of current density and long deposition time of 600sec showed low adhesion with Ti substrate.

  • PDF

Characteristic of Oxidants Production and Dye Degradation with Operation Parameters of Electrochemical Process (전기화학적 공정의 운전인자에 따른 산화제 생성과 염료 분해 특성)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.18 no.11
    • /
    • pp.1235-1245
    • /
    • 2009
  • The purpose of this study is to investigate electro-generation of free Cl, $ClO_2$, $H_2O_2$ and $O_3$ and degradation of Rhodamine B in solution using Ru-Sn-Sb electrode. Electrolysis was performed in one-compartment reactor using a dimensionally stable anode(DSA) of Ru-Sn-Sb/Ti as the working electrode. The effect of applied current (0.5-3 A), electrolyte type (NaCl, KCl, HCl, $Na_2SO_4$ and $H_2SO_4$) and concentration (0.5-2.5 g/L), air flow rate (0-3 L/min) and solution pH (3-11) was evaluated. Experimental results showed that concentration of 4 oxidants was increased with increase of applied current, however optimum current for RhB degradation was 2 A. The generated oxidant concentration and RhB degradation of the of Cl type-electrolyte was higher than that of the sulfate type. The oxidant concentration was increased with increase of NaCl concentration and optimum NaCl dosage for RhB degradation was 1.75 g/L. Optimum air flow rate for the oxidants generation and RhB degradation was 2 L/min. $ClO_2$ and $H_2O_2$ generation was decreased with the increase of pH, whereas free Cl and $O_3$ was not affected by pH. RhB degradation was increase with the pH decrease.

Cyclic voltammetry characteristics of $MnO_2$ electrode mixed with PVDF in sulfuric acid solution (PVDF로 혼합된 $MnO_2$ 전극의 황산 수용액중의 cyclic voltammetry 특성)

  • Kim, Bong-Seo;Lee, Dong-Yoon;Lee, Hee-Woong;Kim, Hyun-Sik;Lee, Hae-Yon;Chung, Won-Sub
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.82-84
    • /
    • 2002
  • Dimensionally stable anode(DSA) can be used for the electrowinning of non-ferrous metal like as a Zn, and electrolysis of sea water. $MnO_2$ electrode satisfies the requirements of DSA, and has a good cycle life and a low overpotential for oxygen evolution. $MnO_2$ electrodes coated with DMF and PVDF based on Pb alloy produced at several compositions and dry temperatures. The viscosity of solvent used as a binder of $MnO_2$ powder increased with the increasing PVDF contents. When the ratio of PVDF to BMF with the 5 times dipping at the solution mixed with PVDF and DMF was 1/9, the coating thickness was $150{\mu}m$. When the ratio of PVDF to $MnO_2$ was lower than 1/6, the electrode didn't show any reaction irrespective of the concentrations of DMF. However, When the ratio of PVDF to $MnO_2$ was higher than 1/6, the electrode showed a constant current reactions and homogeneous cyclic voltammetry even though at a high cycle. The reason for the high current and homogeneous cyclic voltammetry is the good catalytic reactions of $MnO_2$ powder in electrode. The reactions of Pb electrode coated with $MnO_2$ and PVDF based on the pure Pb electrode.

  • PDF

Sonoelectrodeposition of RuO2 electrodes for high chlorine evolution efficiencies (초음파 전기증착법을 활용한 고효율 염소 발생용 루테늄 옥사이드 전극)

  • Luu, Tran Le;Kim, Choonsoo;Yoon, Jeyong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.5
    • /
    • pp.397-407
    • /
    • 2017
  • A dimensionally stable anode based on the $RuO_2$ electrocatalyst is an important electrode for generating chlorine. The $RuO_2$ is well-known as an electrode material with high electrocatalytic performance and stability. In this study, sonoelectrodeposition is proposed to synthesize the $RuO_2$ electrodes. The electrode obtained by this novel process shows better electrocatalytic properties and stability for generating chlorine compared to the conventional one. The high roughness and outer surface area of the $RuO_2$ electrode from a new fabrication process leads to increase in the chlorine generation rate. This enhanced performance is attributed to the accelerated mass transport rate of the chloride ions from electrolyte to electrode surface. In addition, the electrode with sonodeposition method showed higher stability than the conventional one, which might be explained by the mass coverage enhancement. The effect of sonodeposition time was also investigated, and the electrode with longer deposition time showed higher electrocatalytic performance and stability.

Application of Electrochemical Method for Decolorization of Biologically Treated Animal Wastewater Effluent (생물학적 축산폐수 처리수 색도제거를 위한 전기화학적 방법의 적용)

  • 윤성준;신종서;라창식
    • Journal of Animal Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.315-324
    • /
    • 2006
  • This research was conducted to clarify the characteristics of electrochemical decolorization of effluent discharged from a biological animal wastewater treatment process and to finally establish parameters or mode for optimum operation of electrolysis system. Average color unit of wastewater was about 1,200 and DSA(Dimensionally Stable Anode) was used as electrode. Experiments were performed with two different operation conditions or modes, fixed voltage-free current(Run A) and free voltage-fixed current(Run B). Color removal rate was proportional to the electrode area and electrical conductivity, and an equation subject to them at a condition of fixed voltage was derived as follows; Ct=C0ekt, k=[{0.0121×a(dm2)× c(mS/cm)}+0.0288], [where, C0: initial color, Ct: color unit after treatment for t, k: reaction coefficient, t: time(min.), a: electrode area, c: conductivity]. From the study on the effects of current density on color removal, it was revealed that the removal efficiency of color was function of the current density, showing direct proportion. However, when considered energy consumption rate, maintenance of low current density was an economical way. Based on the obtained results, it was concluded that supplementation of electrolyte is not necessary for the removal of color from the effluent of secondary treatment process and operation with the mode of free voltage-fixed current, rather than operation with fixed voltage-free current mode, would be an efficient way to increase the removal performance and capacity per consumed energy.