• Title/Summary/Keyword: DS1104 control board

Search Result 9, Processing Time 0.021 seconds

Speed Sensorless Vector Control of Induction Motor Using MATLAB/SIMULINK and dSPACE DS1104 (MATLAB/SIMULINK와 dSPACE DS1104를 이용한 유도 전동기의 속도 센서리스 벡터제어)

  • Lee, Dong-Min;Lee, Yong-Suk;Ji, Jun-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.2
    • /
    • pp.212-218
    • /
    • 2007
  • This paper presents a implementation of speed sensorless vector control of induction motor using MATLAB/SIMULINK and dSPACE DS1104. Proposed flux estimation algorithm, which utilize the combination of the voltage model based on stator equivalent model and the current model based on rotor equivalent model, enables stable estimation of rotor flux. Proposed rotor speed estimation algorithm utilizes the estimated flux. And the estimated rotor speed is used to speed control of induction motor. Overall system consists of speed controller, current controller, and flux controller using the most general PI controller. Speed sensorless vector control algorithm is implemented as block diagrams using MATLAB/SIMULINK. And realtime control is performed by dSPACE DS1104 control board and Real-Time-Interface(RTI).

  • PDF

Implementation of Thrust Ripple Reduction for a Permanent Magnet Linear Synchronous Motor Using an Adaptive Feed Forward Controller

  • Baratam, Arundhati;Karlapudy, Alice Mary;Munagala, Suryakalavathi
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.687-694
    • /
    • 2014
  • This paper focuses on the analysis and compensation of thrust ripples in permanent magnet linear synchronous motors (PMLSM). The main drawback in PMLSMs is the presence of thrust ripples, which are mainly due to the interaction between the permanent magnets and armature slotted core. These thrust ripples reduce the performance of the drive system in high precision applications especially at low speeds. This paper analyzes thrust ripples using the discrete wavelet transform. These undesired thrust ripples are compensated by using an adaptive feed forward controller. It is observed that this novel controller reduces about 65 percent of the thrust ripples. An extensive simulation is performed through MATLAB and it is validated through experimental results using a d-SPACE system with a DS1104 control board.

Development, Implementation and Experimentation on a dSPACE DS1104 of a Direct Voltage Control Scheme

  • Hmidet, Ali;Dhifaoui, Rachid;Hasnaoui, Othman
    • Journal of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.468-476
    • /
    • 2010
  • This paper proposes and develops a new direct voltage control (DVC) approach. This method is designed to be applied in various applications for AC drives fed with a three-phase voltage source inverter (VSI) working with a constant switching time interval as in the standard direct torque control (DTC) scheme. Based on a very strong min(max) criterion dedicated to selecting the inverter voltage vector, the developed DVC scheme allows the generation of accurate voltage forms of waves. The DVC algorithm is implemented on a dSPACE DS1104 controller board and then compared with the space vector pulse width modulation technique (SVPWM) in an open loop AC drive circuit. To demonstrate the efficiency of the developed algorithm in real time and in closed loop AC drive applications, a scalar control scheme for induction motors is successfully implemented and experimentally studied. Practical results prove the excellent performance of the proposed control approach.

Speed Sensorless Vector Control Implementation of Induction Motor Using dSPACE 1104 System (dSPACE 1104 시스템을 이용한 유도전동기 속도 센서리스 벡터제어 구현)

  • Lee, Dong-Min;Lee, Yong-Suk;Ji, Jun-Keun;Cha, Gui-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1086-1087
    • /
    • 2007
  • This paper presents a implementation of speed sensorless vector control algorithm of induction motor using MATLAB/SIMULINK. The proposed method utilize the combination of the voltage model based on stator equivalent model and the current model based on rotor equivalent model, which enables stable estimation of rotor flux. Estimated rotor speed, which is used to speed controller of induction motor, is based on estimated flux. The overall system consisted of speed controller with the most general PI controller, current controller, flux controller. Speed sensorless vector control algorithm is implemeted as block diagrams using MATLAB/SIMULINK. Realtime control is perform by dSPACE DS1104 control board and Real-Time-Interface(RTI).

  • PDF

Vector Control of SPMSM Using MATLAB/SIMULINK & dSPACE 1104 System (MATLAB/SIMULINK와 dSPACE 1104 시스템을 이용한 표면 부착형 영구자석 동기전동기 벡터제어)

  • Lee, Yong-Seok;Ji, Jun-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.317-326
    • /
    • 2008
  • This paper presents a vector control implementation for SPMSM(Surface-mounted Permanent Magnet Synchronous Motor) using dSPACE 1104 system and MATLAB/SIMULINK. SPMSM can be treated as a DC motor provided that currents of flux and torque component are controlled independently using vector control. Therefore various control algorithms for conventional DC motor control can be adopted to SPMSM. The system is designed to improve set-point tracking capability, fast response, and accuracy In This paper, d-q equivalent modeling of PMSM is derived based on vector control theory. PI controller is used for speed control and decoupling PI controller is used for current control. For the implementation of high performance vector control system, dSPACE 1104 system is used. Experiments were carried out to examine validity of the proposed vector control implementation.

Adaptive-Predictive Controller based on Continuous-Time Poisson-Laguerre Models for Induction Motor Speed Control Improvement

  • Boulghasoul, Z.;El Bahir, L.;Elbacha, A.;Elwarraki, E.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.908-925
    • /
    • 2014
  • Induction Motor (IM) has several desirable features for high performance adjustablespeed operation. This paper presents the design of a robust controller for vector control induction motor drive performances improvement. Proposed predictive speed controller, which is aimed to guarantee the stability of the closed loop, is based on the Poisson-Laguerre (PL) models for the association vector control drive and the induction motor; without necessity of any mechanical parameter, and requires only two control parameters to ensure implicitly the integrator effect on the steady state error, load torque disturbances rejection and anti-windup effect. In order to improve robustness, insensitivity against external disturbances and preserve desired performance, adaptive control is added with the aim to ensure an online identification of controller parameters through an online PL models identification. The proposed control is compared with the conventional approach using PI controller. Simulation with MATLAB/SIMULINK software and experimental results for a 1kW induction motor using a dSPACE system with DS1104 controller board are carried out to show the improvement performance.

Sensorless Control of Induction Motor Drives Using an Improved MRAS Observer

  • Kandoussi, Zineb;Boulghasoul, Zakaria;Elbacha, Abdelhadi;Tajer, Abdelouahed
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1456-1470
    • /
    • 2017
  • This paper presents sensorless vector control of induction motor drives with an improved model reference adaptive system observer for rotor speed estimation and parameters identification from measured stator currents, stator voltages and estimated rotor fluxes. The aim of the proposed sensorless control method is to compensate simultaneously stator resistance and rotor time constant variations which are subject of large changes during operation. PI controllers have been used in the model reference adaptive system adaptation mechanism and in the closed loops of speed and currents regulation. The stability of the proposed observer is proved by the Lyapunov's theorem and its feasibility is verified by experimentation. The experimental results are obtained with an 1 kW induction motor using Matlab/Simulink and a dSPACE system with DS1104 controller board showing the effectiveness of the proposed approach in terms of dynamic performance.

Design and implementation of fast output sampling feedback control for shape memory alloy actuated structures

  • Dhanalakshmi, K.;Umapathy, M.;Ezhilarasi, D.;Bandyopadhyay, B.
    • Smart Structures and Systems
    • /
    • v.8 no.4
    • /
    • pp.367-384
    • /
    • 2011
  • This paper presents the design and experimental evaluation of fast output sampling feedback controller to minimize structural vibration of a cantilever beam using Shape Memory Alloy (SMA) wires as control actuators and piezoceramics as sensor and disturbance actuator. Linear dynamic models of the smart cantilever beam are obtained using online recursive least square parameter estimation. A digital control system that consists of $Simulink^{TM}$ modeling software and dSPACE DS1104 controller board is used for identification and control. The effectiveness of the controller is shown through simulation and experimentation by exciting the structure at resonance.

A Study on the Adaptive Piezoelectric Energy Harvesting (적응 제어기를 이용한 압전 소자로부터의 에너지 회수에 대한 연구)

  • Park Jong-Soo;Nam Yoon-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.64-71
    • /
    • 2006
  • A target of this paper is to study on the usefulness of the adaptive piezoelectric energy harvesting device as a wireless electrical power supply when it is driven by mechanical vibrations of low frequency. For this purpose, an adaptive control technique and a step-down converter are used. A THUNDER series a piezoelectric material (TH7-R), which has been developed by a NASA engineer is selected for this study. In order to provide a mechanical energy to the piezoelectric material, a mechanical motion vibrator is designed. The adaptive controller is implemented using a dSPACE DS1104 controller board. The do-dc converter with an adaptive control technique harvests energy at over five times the rate of direct charging without a converter.