• 제목/요약/키워드: DRR (digital reconstruction radiography)

Search Result 3, Processing Time 0.02 seconds

Evaluation of Usability Both Oblique Verification for Inserted Fiducial Marker of Prostate Cancer Patients (Fiducial Marker가 삽입된 전립선암 환자를 대상으로 한 양사방향 촬영의 유용성 평가)

  • Kim, Koon Joo;Lee, Jung Jin;Kim, Sung Gi;Lim, Hyun Sil;Kim, Wan Sun;Kang, Su Man
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.2
    • /
    • pp.123-129
    • /
    • 2013
  • Purpose: The way check the movement of the fiducial marker insertion in the treatment of patients with prostate cancer. However the existing methods of fiducial marker verification process difficult to identify the specific location of the marker behind the femur and pelvic bone. So to study the evaluation of maker match with using kilo voltage (KV) X-ray by On-board imager to both oblique verification method. Materials and Methods: Five patients were selected for rectal ballooning and inserted fiducial marker. Compare the position of the fiducial marker of reference plan 2D/2D Anterior/Posterior verification method and 2D/2D both oblique verification method. So to measurement the shift score of X, Y, Z (axis) and measure exposure dose given to patients and compare matching time. Results: 2 dimensional OBI KV X-ray imaging using two-dimensional matching image are orthogonal, so locating fiducial marker matching clear and useful DRR (digital reconstruction radiography) OBI souce angle ($45^{\circ}/315^{\circ}$) matching most useful. 2D/2D both oblique verification method was able to see clearly marker behind the pelvic bone. Also matching time can be reduced accordingly. According to the method of each matching results for each patient in each treatment fraction, X, Y, and Z axis the Mean $value{\pm}SD$ (standard deviation) is X axis (AP/LAT: $0.4{\pm}1.67$, OBLIQUE: $0.4{\pm}1.82$) mm, Y axis (AP/LAT: $0.7{\pm}1.73$, OBLIQUE: $0.2{\pm}1.77$) mm, Z axis (AP/LAT: $0.8{\pm}1.94$, OBLIQUE:$1.5{\pm}2.8$) mm. In addition, the KV X-ray source dose radiation exposure given to the patient taking average when AP/LAT matching is (0.1/2.1) cGY, when $315^{\circ}/45^{\circ}$ matching is (0.27/0.26) cGY. Conclusion: In conclusion for inserted fiducial marker of prostate cancer patients 2D/2D both oblique matching method is more accurate verification than 2D/2D AP/LAT matching method. Also the matching time less than the 2D/2D AP/LAT matching method. Taken as the amount of radiation exposure to patients less than was possible. Suggest would improve the treatment quality of care patients more useful to establish a protocol such as case.

  • PDF

Study on the Development and Application of Image Viewer System (Image Viewer System의 개발 및 적용에 관한 고찰)

  • Yang, Oh-Nam;Seo, In-Ki;Hong, Dong-Ki;Kwon, Kyeong-Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.18 no.2
    • /
    • pp.67-73
    • /
    • 2006
  • Purpose: The number of patients receiving radiotherapy has increased every year and will keep increasing in the future. Therefore, the technique of radiotherapy is developing from day to day, as a result of it, the quantities of image and data used for radiotherapy are also considerably increasing. Therefore, there have been many difficulties in storing, keeping and managing them. Then, we developed and applied this system for improving complicated work process as well as solving these problems with the collaboration Medical Information Team. Materials and Methods: We exported its image at R & V (Record and Verify: Varis vision, Varian, USA) system and planning system after giving some code to be able to access from management system(RO) for department of radiation oncology to PACS. And, we programmed their information by using necessary information among many information included in DICOM head. Results: All images and data generated by our working environment (Simulation CT, L-gram image and internal body structure, DRR, does distribution )were realized at PACS and it became to be possible for clear image to be printed from any computer in department of radiation oncology. Conclusion: It was inevitable to use film during radiotherapy for patients in the past, however, due to the development of this system, film-less system became to be possible. Therefore, the darkroom space and its management cost in relation to the development process disappeared and it became to be unnecessary for spending tangible and intangible financial expense including human resources, time needed for finding film storing space and film and purchasing separate storing equipment for storing images. Finally, we think this system would be very helpful to handle ail complicated processes for radiotherapy and increasing efficiency of overall working conditions.

  • PDF

Evaluation on the Accuracy of the PPS in the Proton Therapy System, Which Uses the Self Made QA Phantom (자체 제작한 QA Phantom을 이용한 양성자 PPS (Patient Positioning System)의 정확성 평가)

  • Lee, Ji-Eun;Kim, Jae-Won;Kang, Dong-Yoon;Choi, Jae-Hyeok;Yeom, Du-Seok
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.2
    • /
    • pp.115-121
    • /
    • 2012
  • Purpose: The process of the proton treatment is done by comparing the DRR and DIPS anatomic structure to find the correction factor and use the PPS to use this factor in the treatment. For the accuracy of the patient set up, the PPS uses a 6 axis system to move. Therefore, there needs to be an evaluation for the accuracy between the PPS moving materialization and DIPS correction factor. In order to do this, we will use a self made PPS QA Phantom to measure the accuracy of the PPS. Materials and Methods: We set up a PPS QA Phantom at the center to which a lead marker is attached, which will act instead of the patient anatomic structure. We will use random values to create the 6 axis motions and move the PPS QA Phantom. Then we attain a DIPS image and compare with the DRR image in order to evaluate the accuracy of the correction factor. Results: The average correction factor, after moving the PPS QA Phantom's X, Y, Z axis coordinates together from 1~5 cm, 1 cm at a time, and coming back to the center, are 0.04 cm, 0.026 cm, 0.022 cm, $0.22^{\circ}$, $0.24^{\circ}$, $0^{\circ}$ on the PPS 6 axis. The average correction rate when moving the 6way movement coordinates all from 1 to 2 were 0.06 cm, 0.01 cm, 0.02 cm, $0.1^{\circ}$, $0.3^{\circ}$, $0^{\circ}$ when moved 1 and 0.02 cm, 0.04 cm, 0.01 cm, $0.3^{\circ}$, $0.5^{\circ}$, $0^{\circ}$ when moved 2. Conclusion: After evaluating the correction rates when they come back to the center, we could tell that the Lateral, Longitudinal, Vertical were all in the acceptable scope of 0.5 cm and Rotation, Pitch, Roll were all in the acceptable scope of $1^{\circ}$. Still, for a more accurate proton therapy treatment, we must try to further enhance the image of the DIPS matching system, and exercise regular QA on the equipment to reduce the current rate of mechanical errors.

  • PDF