• Title/Summary/Keyword: DROUGHT

Search Result 2,115, Processing Time 0.031 seconds

Comparison of Reservoir Drought Index According to the Period of Reservoir Storage Data on Agricultural Reservoir (농업용 저수지의 저수량 자료 기간별 가뭄지수 비교)

  • Kim, Sun Joo;Kwon, Hyung Joong;Bark, Min Woo;Kang, Seung Mook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.337-337
    • /
    • 2017
  • 가뭄은 일반적으로 강수량의 부족에 기인하며, 수자원의 이용 및 관리에 큰 영향을 미치는 자연재해이다. 2013년부터 2015년까지 우리나라의 연 평균 강수량은 각각 1,162mm, 1,173mm, 948mm로 평년대비 89.0%, 89.8%, 72.1%의 적은 강수를 보였다. 이는 마른장마, 평년보다 적게 발생한 태풍 등의 영향 인 것으로 판단되며 이러한 강수의 부족으로 인해 전국적으로 가뭄이 빈번하게 발생하였다. 이에 가뭄의 대처방안에 대한 관심이 증대되었고, 가뭄을 정량적으로 표현하고자 하는 연구들이 진행되었다. 가뭄은 크게 수문학적, 기상학적, 농업적 가뭄으로 구분되며 각각의 기준에 따라 다양한 변수들을 이용한 지표들이 개발되었다. 개발된 가뭄 지표는 가뭄을 평가하고 대비하기 위한 의사결정에 유용한 자료로 사용되고 있다. 농업적 가뭄은 강우부족, 실제와 잠재증발산량의 차이, 토양수분 부족, 저수지 또는 지하수위의 저하 등 농작물의 생육과 수확량에 직접적인 영향을 미치는 특성들을 고려하여 평가해야 하며, 이러한 특성들을 고려한 가뭄 지수로는 저수지 가뭄지수(RDI), 토양수분지수(SMI), 통합농업가뭄지수(IADI) 등이 개발되었다. 저수지 가뭄지수는 가뭄발생의 위험과 크기를 순별 가용저수량의 빈도를 이용하여 나타낸 가뭄 지표이다. 따라서 가뭄 지표를 산정하는데 사용된 자료의 기간에 따라 그 값의 차이가 존재한다. 본 연구에서는 각각 10개년, 20개년, 30개년 기간의 백산저수지 농업지구 저수량 자료를 사용하여 2011년부터 2015년까지의 저수지 가뭄지수를 산정하였으며 이를 각각 비교하였다. 2006년부터 2015년까지 10개년 기간의 자료를 사용하여 산정한 가뭄지수는 2012년 ~ 2015년에 가뭄을 나타내고 있었고 특히, 2015년 6월 상순과 중순의 가뭄지수가 -4.1으로 가장 심한 가뭄을 나타내었다. 1996년부터 2015년까지 20개년 기간의 자료를 사용하여 산정한 가뭄지수는 2012 ~ 2015년에 가뭄을 나타내며 2015년 6월 상순과 중순의 가뭄지수는 각각 -0.9, -1.0으로 10개년의 기간을 사용하였을 때보다 완화된 모습을 보였다. 1986년부터 2015년까지 30개년 기간의 자료를 사용하여 산정한 가뭄지수는 2011년부터 2015년까지 가뭄을 나타내고 있었으며, 2015년 6월 상순과 중순의 경우 각각 -1.7, -1.0으로 20개년 자료를 사용하였을 때보다 심한 가뭄을 나타내지만, 10개년 자료를 사용하였을 때보다 완화된 가뭄을 나타내었다. 백산저수지의 경우 2011년부터 2015년까지 가뭄이 발생하였으나, 용수공급이 불가능 할 정도의 가뭄이 발생하지는 않은 것으로 조사되었으며, 30개년 자료를 사용한 가뭄지수가 이와 가장 근사한 가뭄정도를 나타내고 있다. 이는 저수량자료의 기간이 크면 빈도값의 신뢰성이 높아지기 때문인 것으로 판단되며 저수지 가뭄지수의 경우 저수량 자료가 누적될수록 좀 더 정확한 가뭄상황을 표현할 수 있을 것으로 판단된다.

  • PDF

β-Glucan- and Xanthan gum-based Biopolymer Stimulated the Growth of Dominant Plant Species in the Korean Riverbanks (베타글루칸과 잔탄검 계열 바이오폴리머 신소재의 국내 하천 식물종에 대한 생육 촉진 영향)

  • Jeong, Hyungsoon;Jang, Ha-Young;Ahn, Sung-Ju;Kim, Eunsuk
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.3
    • /
    • pp.163-170
    • /
    • 2019
  • The civil engineering materials used to stabilize the slopes of new riverbanks have a great impact on the types and growth of vegetation introduced after the completion of construction procedure. Recently, microbial-derived, ${\beta}$-glucan- and xanthan gum-based biopolymers are attracting attention as an ecofriendly strengthening material of riverbanks that can possibly stimulate plant growth. This study aimed to assess ecological effects of biopolymer application on native plants in Korean riverbanks. In particular, since dominant plant species could shape characteristics of an ecosystem, we examined the effects of biopolymer on the dominant plant species in riverbanks. Overall, biopolymer did not affect seed germination rates of testing plant species. In contrast, plants grew more vigorously in the soil mixed with biopolymer compared to those in the control soil. The biomass of Echinochloa crus-galli especially increased around two times more in the biopolymer treatment. Plants produced heavier root biomass and leaves with larger specific leaf area, which possibly contributes to the tolerance of environmental stress like drought. These results suggest that biopolymers treated on river banks are expected to stimulate plant growth and increase stress tolerance of domestic dominant plant species.

Effect of Heating system on Roof garden for Turf growth (옥상 잔디녹화시 Heating system의 효과)

  • Koh, Seuk-Koo;Shin, Hong-Kyun;Tae, Hyun-Sook;Kim, Yong-Seon;Ahn, Gil-Man
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.2
    • /
    • pp.279-286
    • /
    • 2009
  • This study was carried out to utilize the waste heat from office building for turfgrass culture on a roof garden. Heating system had been installed in the middle of soil profile on the turf areas in the garden plots. The results showed that the installation of heating system increased the shoot density, turfgrass quality, coverage rate, and root length compared with the control plots. The surface temperature of heating plots reached at $10.9^{\circ}C$ when the control plot showed $0^{\circ}C$, however, the soil moisture content was decreased 1.9% by the heating system. When the height of the snow accumulation reached over a 15cm, the it took only 4 days to melt out completely, while the height did not changed those period at the control plots. When the water temperature in boiler increased to $60^{\circ}C$ from a proper temperature of $55^{\circ}C$ in turf growth, the desiccation from leaf tip was started to occur caused by drought stress. More detail research should be followed in stress physiology in turf management in roof garden operation.

Effect of water potential of culture solution on water uptake, transpiration and photosynthesis of Panax ginseng (배양액(培養液)의 수분장력(水分張力)이 인삼(人蔘)의 수분흡수(水分吸收) 증산(蒸散) 및 광합성(光合成)에 미치는 영향(影響))

  • Mok, Sung-Kyun;Park, Hoon;Lee, Chong-Hwa;Son, Suk-Yeong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.13 no.4
    • /
    • pp.115-118
    • /
    • 1981
  • Effect of water potential of culture solution on photosynthesis, transpiration and water uptake was investigated using polyethylene glycol 6000. 1. Even at -0.5 bar of culture solution phothosynthesis was decreased by 20% within 1 hour. Plant in control showed 3.26% loss of initial water for 13 hours suggesting very sensitive in water uptake. 2. Relation between water potential of culture solution (${\psi}$) and water uptake amount (W) 2-year root was ${\psi}=-2.890/e^{2.796W}$ indicating that permanent wilting point will be greater than -2.89 bar. 3. Transpiration considerably decreased with the decrease of water potential and thus by 23.9% at -0.5 bar after 4 hours. 4. From the above results ginseng plant appears to have high root water potential at permanent wilting point and thus very week to water stress due to drought or high salt content in soils.

  • PDF

Research status of transcription factors involved in controlling gene expression by nitrate signaling in higher plants (고등식물의 질산시그널에 의한 유전자 발현제어 관련 전사인자의 연구현황)

  • Jung, Yu Jin;Park, Joung Soon;Go, Ji Yun;Lee, Hyo Ju;Kim, Jin Young;Lee, Ye Ji;Nam, Ki Hong;Cho, Yong-Gu;Kang, Kwon Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.48 no.3
    • /
    • pp.124-130
    • /
    • 2021
  • Nitrate is an important nutrient and signaling molecule in plants that modulates the expression of many genes and regulates plant growth. In this study, we cover the research status of transcription factors related to the control of gene expression by nitrate signaling in higher plants. Nitrate reductase is a key enzyme in nitrogen assimilation, as it catalyzes the nitrate-to-nitrite reduction process in plants. A variety of factors, including nitrate, light, metabolites, phytohormones, low temperature, and drought, modulate the expression levels of nitrate reductase genes and nitrate reductase activity, which is consistent with the physiological role if. Recently, several transcription factors controlling the expression of nitrate reductase genes have been identified in higher plants. NODULE-INCEPTION-Like Proteins (NLPs) are transcription factors responsible for the nitrate-inducible expression of nitrate reductase genes. Since NLPs also control the nitrate-inducible expression of genes encoding the nitrate transporter, nitrite transporter, and nitrite reductase, the expression levels of nitrate reduction pathway-associated genes are coordinately modulated by NLPs in response to nitrate. Understanding the function of nitrate in plants will be useful to create crops with low nitrogen use.

Development of daily spatio-temporal downscaling model with conditional Copula based bias-correction of GloSea5 monthly ensemble forecasts (조건부 Copula 함수 기반의 월단위 GloSea5 앙상블 예측정보 편의보정 기법과 연계한 일단위 시공간적 상세화 모델 개발)

  • Kim, Yong-Tak;Kim, Min Ji;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.12
    • /
    • pp.1317-1328
    • /
    • 2021
  • This study aims to provide a predictive model based on climate models for simulating continuous daily rainfall sequences by combining bias-correction and spatio-temporal downscaling approaches. For these purposes, this study proposes a combined modeling system by applying conditional Copula and Multisite Non-stationary Hidden Markov Model (MNHMM). The GloSea5 system releases the monthly rainfall prediction on the same day every week, however, there are noticeable differences in the updated prediction. It was confirmed that the monthly rainfall forecasts are effectively updated with the use of the Copula-based bias-correction approach. More specifically, the proposed bias-correction approach was validated for the period from 1991 to 2010 under the LOOCV scheme. Several rainfall statistics, such as rainfall amounts, consecutive rainfall frequency, consecutive zero rainfall frequency, and wet days, are well reproduced, which is expected to be highly effective as input data of the hydrological model. The difference in spatial coherence between the observed and simulated rainfall sequences over the entire weather stations was estimated in the range of -0.02~0.10, and the interdependence between rainfall stations in the watershed was effectively reproduced. Therefore, it is expected that the hydrological response of the watershed will be more realistically simulated when used as input data for the hydrological model.

A Study on the Research Topics and Trends in Korean Journal of Remote Sensing: Focusing on Natural & Environmental Disasters (토픽모델링을 이용한 대한원격탐사학회지의 연구주제 분류 및 연구동향 분석: 자연·환경재해 분야를 중심으로)

  • Kim, Taeyong;Park, Hyemin;Heo, Junyong;Yang, Minjune
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_2
    • /
    • pp.1869-1880
    • /
    • 2021
  • Korean Journal of Remote Sensing (KJRS), leading the field of remote sensing and GIS in South Korea for over 37 years, has published interdisciplinary research papers. In this study, we performed the topic modeling based on Latent Dirichlet Allocation (LDA), a probabilistic generative model, to identify the research topics and trends using 1) the whole articles, and 2) specific articles related to natural and environmental disasters published in KJRS by analyzing titles, keywords, and abstracts. The results of LDA showed that 4 topics('Polar', 'Hydrosphere', 'Geosphere', and 'Atmosphere') were identified in the whole articles and the topic of 'Polar' was dominant among them (linear slope=3.51 × 10-3, p<0.05) over time. For the specific articles related to natural and environmental disasters, the optimal number of topics were 7 ('Marine pollution', 'Air pollution', 'Volcano', 'Wildfire', 'Flood', 'Drought', and 'Heavy rain') and the topic of 'Air pollution' was dominant (linear slope=2.61 × 10-3, p<0.05) over time. The results from this study provide the history and insight into natural and environmental disasters in KRJS with multidisciplinary researchers.

Calling for Collaboration to Cope with Climate Change in Ethiopia: Focus on Forestry

  • Kim, Dong-Gill;Chung, Suh-Yong;Melka, Yoseph;Negash, Mesele;Tolera, Motuma;Yimer, Fantaw;Belay, Teferra;Bekele, Tsegaye
    • Journal of Climate Change Research
    • /
    • v.9 no.4
    • /
    • pp.303-312
    • /
    • 2018
  • In Ethiopia, climate change and deforestation are major issues hindering sustainable development. Local Ethiopian communities commonly perceive an increase in temperature and a decrease in rainfall. Meteorological data shows that rainfall has declined in southern Ethiopia, and spring droughts have occurred more frequently during the last 10-15 years. The frequently occurring droughts have seriously affected the agriculture-dominated Ethiopian economy. Forests can play an important role in coping with climate change. However, deforestation is alarmingly high in Ethiopia, and this is attributed mainly to agricultural expansion and fuel wood extraction. Deforestation has led to a decrease in various benefits from forest ecosystem services, and increased ecological and environmental problems including loss of biodiversity. To resolve the issues effectively, it is crucial to enhance climate change resilience through reforestation and various international collaborations are urgently needed. To continue collaboration activities for resolving these issues, it is first necessary to address fundamental questions on the nature of collaboration: does collaboration aim for a support-benefit or a mutual benefit situation; dividing the workload or sharing the workload; an advanced technology or an appropriate technology; and short-term and intensive or long-term and extensive?. Potential collaboration activities were identified by sectors: in the governmental sector, advancing governmental structure and policy, enhancing international collaborations and negotiations, and capacity building for forest restoration and management; in the research and education sector, identifying and filling gaps in forestry and climate change education, capacity building for reforestation and climate change resilience research, and developing bioenergy and feed stocks; and in the business and industry sector, supporting conservation based forestry businesses and industries, while promoting collaboration with the research and education sectors. It is envisaged that international collaboration for enhancing climate change resilience through reforestation will provide a strong platform for resolving climate change and deforestation issues, and achieving sustainable development in Ethiopia.

A study on rationalized values of deoxygenation coefficient for stream quality modelling in the Hwangguji stream (수질모의시 적정 탈산소계수 선정을 위한 연구 - 황구지천을 대상으로 -)

  • Noh, Huiseong;Ahn, Taejin
    • Journal of Wetlands Research
    • /
    • v.21 no.1
    • /
    • pp.77-83
    • /
    • 2019
  • Stream water qualities have been predicted in the year 2002 and 2014 through providing the Hwangguji Stream Rectification Plan. However, the reliability of result for predicted water quality was relatively lower by applying conventional values of the parameters in model. In this study deoxygenation coefficients between Sema bridge(HGJ2) and Sujik bridge(HGJ3) have been evaluated based on the observed data of water quality and travelling time to compare with the applied value of coefficients in predicting water quality model. The values of deoxygenation coefficient $0.078day^{-1}{\sim}0.748day^{-1}$ for normal period and $0.053day^{-1}{\sim}0.505day^{-1}$ for drought period have been calculated based of observed data between Sema bridge and Sujik bridge. The values of coefficients $0.02day^{-1}{\sim}3.4day^{-1}$ have been applied in predicting water quality model in the year 2002 and $0.043day^{-1}$ 2014. Thus, the simulated results of stream water quality were better than the observed data in 2002, and worse in 2014. It has shown that values of deoxygenation coefficient should be properly estimated based on observed data to predict proper stream water quality by model.

Correlations of Earthquake Accelerations and LPIs for Liquefaction Risk Mapping in Seoul & Gyeonggi-do Area based on Artificial Scenarios (서울, 경기지역의 시나리오별 액상화 위험지도 작성을 위한 지진가속도와 LPI 상관관계 분석)

  • Baek, Woohyun;Choi, Jaesoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.5
    • /
    • pp.5-12
    • /
    • 2019
  • On November 15, 2017, a unpredictable liquefaction damage was occurred at the $M_L=5.4$ Pohang earthquake and after, many researches have been conducted in Korea. In Korea, where there were no cases of earthquake damage, it has been extremely neglectable in preparing earthquake risk maps and building earthquake systems that corresponded to prevention and preparation. Since it is almost impossible to observe signs and symptoms of drought, floods, and typhoons in advance, it is very effective to predict the impacts and magnitudes of seismic events. In this study, 14,040 borehole data were collected in the metropolitan area and liquefaction evaluation was performed using the amplification factor. Based on this data, liquefaction hazard maps were prepared for ground accelerations of 0.06 g, 0.14 g, 0.22 g, and 0.30 g, including 200years return period to 4,800years return period. Also, the correlation analysis between the earthquake acceleration and LPI was carried out to draw a real-time predictable liquefaction hazard map. As a result, 707 correlation equations in every cells in GIS map were proposed. Finally, the simulation for liquefaction risk mapping against artificial earthquake was performed in the metropolitan area using the proposed correlation equations.