We developed a useful SQUID magnetometer for biomagnetic applications, magnetoencepha-logram(MEG) and magnetocardiogram(MCG), etc. The SQUIDs are based on Double Relaxation Oscillation SQUID(DROS). DROS consists of two SQUIDs(signal SQUID and reference SQUID) in series, and a relaxation circuit of an inductor and a resistor. Specially we used single reference junction instead of the reference SQUID. The SQUIDs are based on hysteretic $Nb/AlO_{x}$Nb junctions, fabricated by using a simple four level process. Because DROS magnetometer has large flux-to-voltage transfer coefficient, we can use simple flux-locked loop electronics fur SQUID operation. When the DROS magnetometer was operated inside a magnetically shielded room, its average magnetic field noise was about 3 (equation omitted) at 100 Hz. This noise level is low enough to measure biomagnetic fields. In this paper, we describe noise characteristics of DROS magnetometer, depending on the operation condition . .
We developed a SQUID magnetometer based on Double Relaxation Oscillation SQUID(DROS) for measuring magnetocardiography(MCG). Since DROS provides a 10 times larger flux-to-voltage transfer coefficient than the conventional DC-SQUID, simple flux-locked loop electronics could be used for SQUID operation. Especially, we adopted an external feedback to eliminate the magnetic coupling with adjacent channels. When the DROS magnetometer was operated inside a magnetically shielded room, average magnetic field noise was about 5 $fT/^{\surd}Hz$ at 100 Hz. Using the DROS magnetometer, we constructed a multichannel MCG system. The system consisted of 61 magnetometers are arranged in a hexagonal structure and measures a vertical magnetic-field component to the chest surface. The distance between adjacent channels is 26 mm and the magnetometers cover a circular area with a diameter of 208 mm. We recorded the MCG signals with this system and confirmed the magnetic field distribution and the myocardinal current distribution.
We designed and constructed a multichannel superconducting quantum interference device (SQUID) magnetometer system to measure magnetic fields from the human brain. We used a new type of SQUID, the double relaxation oscillation SQUID (DROS). With high flux-to-voltage transfers of the DROS, about 10 times larger than the dc SQUIDs, simple flux-locked loop circuits could be used for SQUID operation. Also the large modulation voltage of the DROS, typically being 100 $mutextrm{V}$, enabled stable flux-locked loop operation against the thermal offset voltage drift of the preamplifier. The magnetometers were fabricated using the Nb/AlOx/Nb junction technology. The SQUID system consists of 37 signal magnetometers, distributed on a semispherical surface, and 11 reference channels were installed to pickup background noises. External feedback was used to eliminate the magnetic coupling with the adjacent channels. The liquid helium dewar has a capacity of 29 L and boil-off rate of about 4 L/d with the total 48 channel insert. The magnetometer system has an average noise level of 3 fT/√Hz at 100 Hz, inside a shielded loon, and was applied to measure auditory-evoked fields.
We have developed control electronics to operate flux-locked loop (FLL), and analog signal filters to process FLL outputs for 64-channel Double Relaxation Oscillation SQUID (DROS) magnetocardiography (MCG) system. Control electronics consisting of a preamplifier, an integrator, and a feedback, is compact and low-cost due to larger swing voltage and flux-to-voltage transfer coefficients of DROS than those of dc SQUIDs. Analog signal filter (ASF) serially chained with a high-pass filter having a cut-off frequency of 0.1 Hz, an amplifier having a gain of 100, a low-pass filter of 100 Hz, and a notch filter of 60 Hz makes FLL output suitable for MCG. The noise of a preamplifier in FLL control electronics is $7\;nV/{\surd}\;Hz$ at 1 Hz, $1.5\;nV/{\surd}\;Hz$ at 100 Hz that contributes $6\;fT/{\surd}\;Hz$ at 1 Hz, $1.3\;fT/{\surd}\;Hz$ at 100 Hz in readout electronics, and the noise of ASF electronics is $150\;{\mu}V/{\surd}\;Hz$ equivalent to $0.13\;fT/{\surd}\;Hz$ within the range of $1{\sim}100\;Hz$. When DROSs are connected to readout electronics inside a magnetically shielded room, the noise of 64-channel DROS system is $10\;fT/{\surd}\;Hz$ at 1 Hz, $5\;fT/{\surd}\;Hz$ at 100 Hz on the average, low enough to measure human MCG.
뇌자도 측정을 위해 고감도 superconducting quantum interference device (SQUID) 자력계 및 37채널 뇌자도 측정장치를 제작하고 동작특성을 조사하였다. 자속-전압 변환계수 및 변조전압 진폭이 큰 double relaxation oscillation SQUID (DROS)를 사용함으로서 구동회로를 간단히 하였고 안정한 SQUID 동작을 실현할 수 있었다. DROS 자력계를 설계 및 제작한 결과 자력계의 평균 백색잡음은 약 3 fT/√Hz으로서 우수한 자장감도를 가짐을 확인하였다 머리의 평균곡률을 기반으로 37개의 자력계를 반구형으로 배치시켰으며, 외부잡음을 줄이기 위해 신호채널 외에 11개의 기준채널을 설치하여 소프트웨어 방법으로 합성미분계 및 적응필터링을 형성할 수 있도록 하였다 저잡음 듀아를 제작하여 동작특성을 측정한 결과 듀아 열자기 잡음이 자력계 잡음에 비해 무시할 수 있는 수준이었으며, 듀아의 용량은 30 L, 액체헬륨 증발율은 4 L/d이다. 제작된 시스템을 이용하여 청각유발 신호를 측정하고, 디지털 신호처리 및 전류원 국지화 프로그램을 구성하여 전류원의 위치를 추정함으로서 개발된 시스템을 뇌자도 측정에 활용하였다.
Objectives : Human physiological changes in the state of qigong has been measured using EEG(Electroencephalography), functional MRI(functional Magnetic Resonance Image), EAV(Electro-Acupuncture according to Voll) and SQUID(Superconducting Quantum Interference Device) measurements. Methods & Results : EEGs were measured to study the differences between Qigong masters and Qi receiver on the changes of EEG. During Qigong, an alpha waves were increased. The power spectra indicate that the peak frequency of alpha waves increased during Qigong. Qi receiver's EEG signals seemed to affected by the state of himself. Brain activation did not observed when qigong master concentrates the Qi at Laogong(P8). But a localization of fMRI signal in the sensory cortex was observed by electric acupuncture stimulation at Laogong(P8). Five phase deviation of EAV were clearly changed in the both cases of Qigong master and Qi receiver. When a Qigong master concentrates the Qi at Yintang, Laogong(P8), Qihai(CV6) meridian points during Qigong state, the change of magnetic field around acupoints Yintang, Laogong points has been measured using 40-Channel DROS-SQUID apparatus. After smoothing process of the continuously measured magnetic signal around acupoints for a few minutes, we could observe that a series of peaks, magnitude of -1.0~2.5pT appeared. But there was no significant difference in changes of magnetic signal around acupoints. Physical signals of magnetocardiogram has been measured by using 2-Channel DROS SQUID(Magnetocardiogram). Physical signals of magnetocardiogram were clealy changed at the ST segments after S-wave when qigong master concentrates the Qi.
Using the 2-channel DROS SQUID (Korea Research Institute of Standards of Science, 1999), the present study was carried out to record changes elicited in the auditory cortex by acupuncture stimulus (right GB43, Xiaxi). Needle-retention and manual needle-twitching stimulation of GB43 and SP1 were done for acquiring the brain activities changed by acupuncture. Acupoint GB43 is known to be effective for the treatment of ear-related disease, such as deafness and tinnitus, and to be suspected to be related to the auditory cortex. Auditory evoked magnetic fields were recorded from the left hemisphere of five or four subjects, in response to contralateral ear stimulation by irregularly spaced 170msec long 1kHz tone busts (Korea Research Institute of Standards of Science). The result as follows The latency and amplitude of SQUID MEG responses at the human auditory cortex changed by needle-retention condition on GB43 were 7.2msec and 1.617, respectively, which were slower and larger than those of no-acupuncture condition. The amplitude of SQUID MEG responses at the human auditory cortex changed by needle-twitching condition on GB43 was 13.517, which was larger than that of no-acupuncture condition. The change in SP1 following GB43 needle-twitching condition were not observed in latency. The amplitude changed by needle-twitching condition on SP1 was 12.2fT, which was not significant. These results suggested that auditory cortex can be affected by acupuncture stimulus, though not specific or significant because of small number of subjects.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.