• Title/Summary/Keyword: DRL(deep reinforcement learning)

Search Result 28, Processing Time 0.03 seconds

Research Trends on Deep Reinforcement Learning (심층 강화학습 기술 동향)

  • Jang, S.Y.;Yoon, H.J.;Park, N.S.;Yun, J.K.;Son, Y.S.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.4
    • /
    • pp.1-14
    • /
    • 2019
  • Recent trends in deep reinforcement learning (DRL) have revealed the considerable improvements to DRL algorithms in terms of performance, learning stability, and computational efficiency. DRL also enables the scenarios that it covers (e.g., partial observability; cooperation, competition, coexistence, and communications among multiple agents; multi-task; decentralized intelligence) to be vastly expanded. These features have cultivated multi-agent reinforcement learning research. DRL is also expanding its applications from robotics to natural language processing and computer vision into a wide array of fields such as finance, healthcare, chemistry, and even art. In this report, we briefly summarize various DRL techniques and research directions.

Applying Deep Reinforcement Learning to Improve Throughput and Reduce Collision Rate in IEEE 802.11 Networks

  • Ke, Chih-Heng;Astuti, Lia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.1
    • /
    • pp.334-349
    • /
    • 2022
  • The effectiveness of Wi-Fi networks is greatly influenced by the optimization of contention window (CW) parameters. Unfortunately, the conventional approach employed by IEEE 802.11 wireless networks is not scalable enough to sustain consistent performance for the increasing number of stations. Yet, it is still the default when accessing channels for single-users of 802.11 transmissions. Recently, there has been a spike in attempts to enhance network performance using a machine learning (ML) technique known as reinforcement learning (RL). Its advantage is interacting with the surrounding environment and making decisions based on its own experience. Deep RL (DRL) uses deep neural networks (DNN) to deal with more complex environments (such as continuous state spaces or actions spaces) and to get optimum rewards. As a result, we present a new approach of CW control mechanism, which is termed as contention window threshold (CWThreshold). It uses the DRL principle to define the threshold value and learn optimal settings under various network scenarios. We demonstrate our proposed method, known as a smart exponential-threshold-linear backoff algorithm with a deep Q-learning network (SETL-DQN). The simulation results show that our proposed SETL-DQN algorithm can effectively improve the throughput and reduce the collision rates.

Deep Reinforcement Learning in ROS-based autonomous robot navigation

  • Roland, Cubahiro;Choi, Donggyu;Jang, Jongwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.47-49
    • /
    • 2022
  • Robot navigation has seen a major improvement since the the rediscovery of the potential of Artificial Intelligence (AI) and the attention it has garnered in research circles. A notable achievement in the area was Deep Learning (DL) application in computer vision with outstanding daily life applications such as face-recognition, object detection, and more. However, robotics in general still depend on human inputs in certain areas such as localization, navigation, etc. In this paper, we propose a study case of robot navigation based on deep reinforcement technology. We look into the benefits of switching from traditional ROS-based navigation algorithms towards machine learning approaches and methods. We describe the state-of-the-art technology by introducing the concepts of Reinforcement Learning (RL), Deep Learning (DL) and DRL before before focusing on visual navigation based on DRL. The case study preludes further real life deployment in which mobile navigational agent learns to navigate unbeknownst areas.

  • PDF

ROV Manipulation from Observation and Exploration using Deep Reinforcement Learning

  • Jadhav, Yashashree Rajendra;Moon, Yong Seon
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.3
    • /
    • pp.136-148
    • /
    • 2017
  • The paper presents dual arm ROV manipulation using deep reinforcement learning. The purpose of this underwater manipulator is to investigate and excavate natural resources in ocean, finding lost aircraft blackboxes and for performing other extremely dangerous tasks without endangering humans. This research work emphasizes on a self-learning approach using Deep Reinforcement Learning (DRL). DRL technique allows ROV to learn the policy of performing manipulation task directly, from raw image data. Our proposed architecture maps the visual inputs (images) to control actions (output) and get reward after each action, which allows an agent to learn manipulation skill through trial and error method. We have trained our network in simulation. The raw images and rewards are directly provided by our simple Lua simulator. Our simulator achieve accuracy by considering underwater dynamic environmental conditions. Major goal of this research is to provide a smart self-learning way to achieve manipulation in highly dynamic underwater environment. The results showed that a dual robotic arm trained for a 3DOF movement successfully achieved target reaching task in a 2D space by considering real environmental factor.

Development of Convolutional Network-based Denoising Technique using Deep Reinforcement Learning in Computed Tomography (심층강화학습을 이용한 Convolutional Network 기반 전산화단층영상 잡음 저감 기술 개발)

  • Cho, Jenonghyo;Yim, Dobin;Nam, Kibok;Lee, Dahye;Lee, Seungwan
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.7
    • /
    • pp.991-1001
    • /
    • 2020
  • Supervised deep learning technologies for improving the image quality of computed tomography (CT) need a lot of training data. When input images have different characteristics with training images, the technologies cause structural distortion in output images. In this study, an imaging model based on the deep reinforcement learning (DRL) was developed for overcoming the drawbacks of the supervised deep learning technologies and reducing noise in CT images. The DRL model was consisted of shared, value and policy networks, and the networks included convolutional layers, rectified linear unit (ReLU), dilation factors and gate rotation unit (GRU) in order to extract noise features from CT images and improve the performance of the DRL model. Also, the quality of the CT images obtained by using the DRL model was compared to that obtained by using the supervised deep learning model. The results showed that the image accuracy for the DRL model was higher than that for the supervised deep learning model, and the image noise for the DRL model was smaller than that for the supervised deep learning model. Also, the DRL model reduced the noise of the CT images, which had different characteristics with training images. Therefore, the DRL model is able to reduce image noise as well as maintain the structural information of CT images.

Methodology for Apartment Space Arrangement Based on Deep Reinforcement Learning

  • Cheng Yun Chi;Se Won Lee
    • Architectural research
    • /
    • v.26 no.1
    • /
    • pp.1-12
    • /
    • 2024
  • This study introduces a deep reinforcement learning (DRL)-based methodology for optimizing apartment space arrangements, addressing the limitations of human capability in evaluating all potential spatial configurations. Leveraging computational power, the methodology facilitates the autonomous exploration and evaluation of innovative layout options, considering architectural principles, legal standards, and client re-quirements. Through comprehensive simulation tests across various apartment types, the research demonstrates the DRL approach's effec-tiveness in generating efficient spatial arrangements that align with current design trends and meet predefined performance objectives. The comparative analysis of AI-generated layouts with those designed by professionals validates the methodology's applicability and potential in enhancing architectural design practices by offering novel, optimized spatial configuration solutions.

Leveraging Visibility-Based Rewards in DRL-based Worker Travel Path Simulation for Improving the Learning Performance

  • Kim, Minguk;Kim, Tae Wan
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.5
    • /
    • pp.73-82
    • /
    • 2023
  • Optimization of Construction Site Layout Planning (CSLP) heavily relies on workers' travel paths. However, traditional path generation approaches predominantly focus on the shortest path, often neglecting critical variables such as individual wayfinding tendencies, the spatial arrangement of site objects, and potential hazards. These oversights can lead to compromised path simulations, resulting in less reliable site layout plans. While Deep Reinforcement Learning (DRL) has been proposed as a potential alternative to address these issues, it has shown limitations. Despite presenting more realistic travel paths by considering these variables, DRL often struggles with efficiency in complex environments, leading to extended learning times and potential failures. To overcome these challenges, this study introduces a refined model that enhances spatial navigation capabilities and learning performance by integrating workers' visibility into the reward functions. The proposed model demonstrated a 12.47% increase in the pathfinding success rate and notable improvements in the other two performance measures compared to the existing DRL framework. The adoption of this model could greatly enhance the reliability of the results, ultimately improving site operational efficiency and safety management such as by reducing site congestion and accidents. Future research could expand this study by simulating travel paths in dynamic, multi-agent environments that represent different stages of construction.

Deep reinforcement learning for a multi-objective operation in a nuclear power plant

  • Junyong Bae;Jae Min Kim;Seung Jun Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3277-3290
    • /
    • 2023
  • Nuclear power plant (NPP) operations with multiple objectives and devices are still performed manually by operators despite the potential for human error. These operations could be automated to reduce the burden on operators; however, classical approaches may not be suitable for these multi-objective tasks. An alternative approach is deep reinforcement learning (DRL), which has been successful in automating various complex tasks and has been applied in automation of certain operations in NPPs. But despite the recent progress, previous studies using DRL for NPP operations have limitations to handle complex multi-objective operations with multiple devices efficiently. This study proposes a novel DRL-based approach that addresses these limitations by employing a continuous action space and straightforward binary rewards supported by the adoption of a soft actor-critic and hindsight experience replay. The feasibility of the proposed approach was evaluated for controlling the pressure and volume of the reactor coolant while heating the coolant during NPP startup. The results show that the proposed approach can train the agent with a proper strategy for effectively achieving multiple objectives through the control of multiple devices. Moreover, hands-on testing results demonstrate that the trained agent is capable of handling untrained objectives, such as cooldown, with substantial success.

Path Planning with Obstacle Avoidance Based on Double Deep Q Networks (이중 심층 Q 네트워크 기반 장애물 회피 경로 계획)

  • Yongjiang Zhao;Senfeng Cen;Seung-Je Seong;J.G. Hur;Chang-Gyoon Lim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.2
    • /
    • pp.231-240
    • /
    • 2023
  • It remains a challenge for robots to learn avoiding obstacles automatically in path planning using deep reinforcement learning (DRL). More and more researchers use DRL to train a robot in a simulated environment and verify the possibility of DRL to achieve automatic obstacle avoidance. Due to the influence factors of different environments robots and sensors, it is rare to realize automatic obstacle avoidance of robots in real scenarios. In order to learn automatic path planning by avoiding obstacles in the actual scene we designed a simple Testbed with the wall and the obstacle and had a camera on the robot. The robot's goal is to get from the start point to the end point without hitting the wall as soon as possible. For the robot to learn to avoid the wall and obstacle we propose to use the double deep Q networks (DDQN) to verify the possibility of DRL in automatic obstacle avoidance. In the experiment the robot used is Jetbot, and it can be applied to some robot task scenarios that require obstacle avoidance in automated path planning.

Optimal sensor placement for structural health monitoring based on deep reinforcement learning

  • Xianghao Meng;Haoyu Zhang;Kailiang Jia;Hui Li;Yong Huang
    • Smart Structures and Systems
    • /
    • v.31 no.3
    • /
    • pp.247-257
    • /
    • 2023
  • In structural health monitoring of large-scale structures, optimal sensor placement plays an important role because of the high cost of sensors and their supporting instruments, as well as the burden of data transmission and storage. In this study, a vibration sensor placement algorithm based on deep reinforcement learning (DRL) is proposed, which can effectively solve non-convex, high-dimensional, and discrete combinatorial sensor placement optimization problems. An objective function is constructed to estimate the quality of a specific vibration sensor placement scheme according to the modal assurance criterion (MAC). Using this objective function, a DRL-based algorithm is presented to determine the optimal vibration sensor placement scheme. Subsequently, we transform the sensor optimal placement process into a Markov decision process and employ a DRL-based optimization algorithm to maximize the objective function for optimal sensor placement. To illustrate the applicability of the proposed method, two examples are presented: a 10-story braced frame and a sea-crossing bridge model. A comparison study is also performed with a genetic algorithm and particle swarm algorithm. The proposed DRL-based algorithm can effectively solve the discrete combinatorial optimization problem for vibration sensor placements and can produce superior performance compared with the other two existing methods.