• Title/Summary/Keyword: DRIE

Search Result 70, Processing Time 0.031 seconds

광 도파관 용 실리콘 마스터의 제작

  • ;;;;;;Makoto Ishida
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2005.05a
    • /
    • pp.111-115
    • /
    • 2005
  • 광 도파관 제작을 위한 마스터를 (100), (110) 실리콘 웨이퍼를 이용하여 제작하였다. DRIE와 화학적 습식 식각을 이용하여 사각형 모양의 부드러운 표면을 가진 마스터를 구현하였다. 식각된 패턴의 거칠기는 광 도파관을 제작할 수 있을 정도로 충분히 작았다. 마스터와 광 도파관의 분리를 용이하게 하기 위하여 마스터에 산화막을 형성하고 PFAS를 도포함으로써 HIBRIMERs 광 도파관을 성공적으로 제작할 수 있었다.

  • PDF

Study of Chip-level Liquid Cooling for High-heat-flux Devices (고열유속 소자를 위한 칩 레벨 액체 냉각 연구)

  • Park, Manseok;Kim, Sungdong;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.2
    • /
    • pp.27-31
    • /
    • 2015
  • Thermal management becomes a key technology as the power density of high performance and high density devices increases. Conventional heat sink or TIM methods will be limited to resolve thermal problems of next-generation IC devices. Recently, to increase heat flux through high powered IC devices liquid cooling system has been actively studied. In this study a chip-level liquid cooling system with TSV and microchannel was fabricated on Si wafer using DRIE process and analyzed the cooling characteristics. Three different TSV shapes were fabricated and the effect of TSV shapes was analyzed. The shape of liquid flowing through microchannel was observed by fluorescence microscope. The temperature differential of liquid cooling system was measured by IR microscope from RT to $300^{\circ}C$.

Optimization of Etching Profile in Deep-Reactive-Ion Etching for MEMS Processes of Sensors

  • Yang, Chung Mo;Kim, Hee Yeoun;Park, Jae Hong
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.10-14
    • /
    • 2015
  • This paper reports the results of a study on the optimization of the etching profile, which is an important factor in deep-reactive-ion etching (DRIE), i.e., dry etching. Dry etching is the key processing step necessary for the development of the Internet of Things (IoT) and various microelectromechanical sensors (MEMS). Large-area etching (open area > 20%) under a high-frequency (HF) condition with nonoptimized processing parameters results in damage to the etched sidewall. Therefore, in this study, optimization was performed under a low-frequency (LF) condition. The HF method, which is typically used for through-silicon via (TSV) technology, applies a high etch rate and cannot be easily adapted to processes sensitive to sidewall damage. The optimal etching profile was determined by controlling various parameters for the DRIE of a large Si wafer area (open area > 20%). The optimal processing condition was derived after establishing the correlations of etch rate, uniformity, and sidewall damage on a 6-in Si wafer to the parameters of coil power, run pressure, platen power for passivation etching, and $SF_6$ gas flow rate. The processing-parameter-dependent results of the experiments performed for optimization of the etching profile in terms of etch rate, uniformity, and sidewall damage in the case of large Si area etching can be summarized as follows. When LF is applied, the platen power, coil power, and $SF_6$ should be low, whereas the run pressure has little effect on the etching performance. Under the optimal LF condition of 380 Hz, the platen power, coil power, and $SF_6$ were set at 115W, 3500W, and 700 sccm, respectively. In addition, the aforementioned standard recipe was applied as follows: run pressure of 4 Pa, $C_4F_8$ content of 400 sccm, and a gas exchange interval of $SF_6/C_4F_8=2s/3s$.

Empirical Correlation for Natural Convective Heat Transfer around Microfin Arrays (마이크로 휜 배열 주위의 자연대류 열전달에 관한 실험 관계식)

  • Kim, Jin-Sub;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2055-2060
    • /
    • 2007
  • Microfin arrays with fin heights of 100 ${\mu}$m and 200 ${\mu}$m and six different spacings from 30 ${\mu}m$to 360 ${\mu}m$ are fabricated using the DRIE process. Natural convective heat transfer around the microfin arrays on both vertical and horizontal surfaces is experimentally examined. It turns out that the orientation effect of microfin arrays is negligible compared with macrofin arrays. The obtained heat transfer coefficients are compared with the existing heat transfer correlation for the macrofin arrays. It is concluded that the existing macrocorrelation is no longer valid for the microfin arrays. Relevant empirical correlations for microfin arrays on the vertical and horizontal surfaces are presented based on the present experimental data.

  • PDF

The Micro-Actuator Development of using the Bubble (기포를 이용한 마이크로 액츄에이터 개발)

  • 최종필;반준호;전병희;장인배;김헌영;김병희
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.381-385
    • /
    • 2003
  • This paper presents the fabrication possibility of the micro actuator which uses a micro-thermal bubble, generated by a micro-heater under pulse heating. The micro-actuator is consist of three plate. The lower plate includes the channel and chamber are fabricated on high processability silicon wafer by the DRIE(Deep Reactive ion Etching) process. The middle plate includes the chamber and diaphragm, and the upper plate is the micro-heater. The micro-heater designed non-uniform width and results in periodic generation of stable single bubbles in D.I water. The single bubble appears precisely on the narrow part of the micro-heater and control is recorded.

  • PDF

Study of nano patterning rheology in hot embossing process (핫엠보싱 공정에서의 미세 패턴 성형에 관한 연구)

  • Kim, H.;Kim, K.S.;Kim, H.Y.;Kim, B.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.371-376
    • /
    • 2003
  • The hot embossing process has been mentioned as one of major nanoreplication techniques. This is due to its simple process, low cost, high replication fidelity and relatively high throughput. As the initial step of quantitating the embossing process, simple parametric study about embossing time have been carried out using high-resolution masters which patterned by the DRIE process and laser machining. Under the various embossing time, the viscous flow of thin PMMA films into microcavities during Compression force has been investigated. Also, a study about simulating the viscous flow during embossing process has planned and continuum scale FDM analysis was applied on this simulation. With currently available test data and condition, simple FDM analysis using FLOW3D was made attempt to match simulation and experiment.

  • PDF

Development of MEMS-based Micro Turbomachinery (MEMS-based 마이크로 터보기계의 개발)

  • Park, Kun-Joong;Min, Hong-Seok;Jeon, Byung-Sun;Song, Seung-Jin;Joo, Young-Chang;Min, Kyoung-Doug;You, Seung-Mun
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.169-174
    • /
    • 2001
  • This paper reports on the development of high aspect ratio structure and 3-D integrated process for MEMS-based micro gas turbines. To manufacture high aspect ratio structures, Deep Reactive Ion Etching (DRIE) process have been developed and optimized. Specially, in this study, structures with aspect ratios greater than 10 were fabricated. Also, wafer direct bonding and Infra-Red (IR) camera bonding inspection systems have been developed. Moreover, using glass/silicon wafer direct bonding, we optimized the 3-D integrated process.

  • PDF

Development of Micro Power System (마이크로 파워 시스템의 개발)

  • Bang, Jung-Hwan;Kim, Sejun;Jeon, Byung-Sun;Min, Hong-Seok;Min, Kyoungdoug;Song, Seung-Jin;Joo, Young-Chang
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.477-481
    • /
    • 2002
  • This paper reports on the development of micro power system component under way at Seoul National University. The need of micro power system is explained and components of micro power system are described. The developments of hydrogen-air micro combustor, micro igniter based poly-silicon heater and micro thruster are described. To manufacture 3-D micro structure the process that manufactures high aspect ratio structures has been developed and optimized. Design, fabrication, and experiment processes are introduced and technical challenges in each phase are described.

  • PDF

Development of Micro Turbine based on MEMS Technology (MEMS 기술을 이용한 마이크로 터빈의 개발)

  • 전병선;박건중;민홍석;김세준;송성진;주영창;민경덕
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.120-124
    • /
    • 2002
  • Microturbine refers to turbines on the scale of centimeters which can transmit power on the order of tens of Watts. Such devices can be used as propulsion or power generation devices for various military systems. An interdisciplinary team at Seoul National University has designed, and fabricated such a device, and this paper describes each phase. A commercial code has been used for design, and MEMS processes have been used for manufacturing. Finally, some preliminary test results are presented.