• Title/Summary/Keyword: DPP

Search Result 164, Processing Time 0.021 seconds

Study on Online Monitoring of Dissolved Oxygen, pH and Cell Concentration in E. coli Cultivation Processes Using MABOOMSTM (마이크로플레이트 기반 생물반응기 시스템 (MABOOMSTM)을 이용한 대장균 배양공정에서 용존산소, pH 및 세포농도의 온라인 모니터링 연구)

  • Sohn, Ok-Jae;Rhee, Jong Il
    • KSBB Journal
    • /
    • v.28 no.1
    • /
    • pp.24-30
    • /
    • 2013
  • Dissolved oxygen, pH and cell concentration have been online monitored in cultivation processes with Escherichia coli by using a $MABOOMS^{TM}$ (microplate-based bioreactor with optical online monitoring systems). Fluorescent sensing membranes containing Ru ${(dpp)_3}^{2+}$ or HPTS were prepared with GA sol-gel matrix and coated into a well of a 24-well microplate. Fluorescence intensity was measured and correlated to the dissolved oxygen or pH. Cell concentrations were also online monitored by measuring optical reflectance at 650 nm. A well of a 24-well microplate could also be divided into 4 parts, each of which was coated with fluorescent sensing membranes for the detection of dissolved oxygen or pH. The 24-well microplate coated with fluorescent sensing membranes or a 4-divided sensing membrane. was used to online monitor the dissolved oxygen, pH and cell concentration during E. coli cultivations. The online monitoring results showed the characteristics of cell growth in cultivation processes very well.

Alteration of LAR-RPTP Expression in the Rat Trigeminal Ganglion after Tooth Extraction

  • Kim, Sun-Hun;Kim, Hyun-Jin
    • International Journal of Oral Biology
    • /
    • v.36 no.4
    • /
    • pp.167-172
    • /
    • 2011
  • LAR-RPTP (leukocyte common antigen-related receptor protein tyrosine phosphatase) is an important regulator in the nervous system, but little is known about its expression pattern in rat trigeminal ganglion (TG) neurons. To examine whether LAR-RPTP is expressed in the TG in the current study, we sacrificed rats at 0, 7, 10 and 56 day postpartum (dpp) and a second group of rats at 3 and 5 days after an experimental tooth extraction as a TG injury model. RT-PCR was then used to determine the level of LAR-RPTP expression in the TG and immunohistology was employed to detect the subcellular localization of the protein. The mRNA expression of LAR-RPTP during the developmental stages in the TG was found to gradually increase. After experimental tooth extraction however, these transcript levels had significantly decreased at three days. LAR-RPTP protein signals in the TG were found to be cytoplasmic in the normal animals but interestingly, at five days after an experimental tooth extraction, these signals were rare. These results indicate that LAR-RPTP may be regulated during both the developmental as well as regenerative processes that take place in the TG. This further suggests that LAR-RPTP is not only involved in primary axonogenesis but possibly also in the molecular control of axons during TG repair.

Development and Characterization of Multi-Segmented Tissue Equivalent Proportional Counter for Microdosimetry (마이크로 도시메트리용 다분할 조직등가비례계수기의 개발과 특성 평가)

  • Nam, Uk-Won;Park, Won-Kee;Lee, Jaejin;Pyo, Jeonghyun;Moon, Bong-Kon;Moon, Myung Kook;Lim, Chang Hwy;Lee, Suhyun;Kim, Sunghwan
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.101-106
    • /
    • 2015
  • We designed, developed and characterized a multi-segmented tissue equivalent proportional (TEPC) counter for microdosimetry. The energy resolution of the multi-segmented TEPC was about 12% for $^{241}Am$ 5.45 MeV alpha particles. The resolution was better than 33% for a single un-segmented TEPC. A compact and low power consumption TEPC could be made by using digital pulse processor (DPP). We also successfully calibrated the TEPC by using $^{252}Cf$ standard neutron source in Korea Research Institute of Standards and Science (KRISS). According to the results, the TEPC is useful for several application of radiation monitoring such as a neutron monitor, air crew monitor and space dosimeter.

Trends and Perspectives in the Development of Antidiabetic Drugs for Type 2 Diabetes Mellitus (제 2형 당뇨병 치료제의 개발 동향)

  • Lee, Soo-Hyun;Lee, Jong-Keun;Kim, Ik-Hwan
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.3
    • /
    • pp.180-185
    • /
    • 2012
  • Type 2 Diabetes Mellitus, a chronic metabolic disorder which results from a high blood glucose level, is one of the most prevalent and costly diseases of our time. Considering increasing rates of obesity and the aging population in Korea, the number of diabetic patients is likely to rise rapidly in the future. There are five conventional diabetic drugs which work through different mechanisms; sulfonylureas, biguanide, meglitinide, alpha-glucosidase inhibitors, and thiazolidinedione. Although they all have antidiabetic effects, some side effects such as hypoglycemia, weight gain and gastrointestinal intolerance are associated with them. Incretin based therapies, utilizing glucagon-like peptide-1 (GLP-1) and dipeptidyl peptidase-4 (DPP-4) inhibitors, which have a lower risk of adverse side effects, have recently been introduced. At present PPAR-targeting drugs are being actively developed. In this research review, particular emphasis has been placed on the current trends and possible biological targets for the new generation of antidiabetic drugs.

Efficacy of evogliptin and cenicriviroc against nonalcoholic steatohepatitis in mice: a comparative study

  • Wang, Zheng;Park, Hansu;Bae, Eun Ju
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.6
    • /
    • pp.459-466
    • /
    • 2019
  • Dipeptidyl peptidase (DPP)-4 inhibitors, or gliptins, are a class of oral hypoglycemic drugs that have been widely used as a second-line treatment for type 2 diabetes. Gliptins, which were introduced for clinical use a decade ago, have been shown to be beneficial against nonalcoholic fatty liver disease/nonalcoholic steatohepatitis (NASH) in animals and humans. Cenicriviroc (CVC), a dual antagonist of C-C chemokine receptor type 2 and 5, is currently under investigation against NASH and fibrosis. It was previously discovered that evogliptin (EVO) reduces hepatic steatosis in diet-induced obese animals but the effectiveness of EVO on NASH remains unexplored. Here, we compared the effectiveness of EVO and CVC against NASH and fibrosis in mice fed a high-fat and high-fructose diet (HFHF). Biochemical and histological analyses showed that mice fed a HFHF for 20 weeks developed severe hepatic steatosis and inflammation with mild fibrosis. Administration of EVO (0.2% wt/wt) for the last 8 weeks of HFHF feeding significantly reduced hepatic triglyceride accumulation, inflammation, and fibrosis as well as restored insulin sensitivity, as evidenced by lowered plasma insulin levels and the improvement in insulin tolerance test curves. Treatment of mice with CVC (0.1% wt/wt) inhibited hepatic inflammation and fibrogenesis with similar efficacy to that of EVO, without affecting hepatic steatosis. CVC treatment also reduced plasma insulin concentrations, despite no improvement in insulin tolerance. In conclusion, EVO administration efficiently ameliorated the development of NASH and fibrosis in HFHF-fed mice, corroborating its therapeutic potential.

A Study of Plasticizer in Food and Drug PVC Packaging (PVC포장재에 사용된 가소제에 관한 조사연구)

  • Yoon Mi-Hye;Eom Mi-Na;Do Young-Sook;Jung Hong-Rae;Jeong Il-Heoung;Ko Hoan-Uck;Son Jin-Seok
    • Journal of environmental and Sanitary engineering
    • /
    • v.20 no.2 s.56
    • /
    • pp.39-46
    • /
    • 2005
  • This study was Performed to survey and evaluate the contents of Plasticizers such as DEP(diethyl phthalate), DPrP(di-n-Phthalate), DBP(di-n-butyl Phthalate), DPP(di-n-pentyl Phthalate), DCHP(dicyclohexyl phthalate), BBP (butylbenzyl phthalate), DEHP(di-(2-ethylhexyl) phthalate) and DEHA(di-(2-ethylheryl) adipate), which are suspected as endocrine disruptors, in food and drug PVC packaging. Tested samples were 5 food wraps, 35 food containers, 40 food and drug packages(type of tablet and capsule) in Gyeonggi-Do area. The contents of DEHA in wrap were 188.9g/kg, 203.1g/kg, 238.4g/kg, 290.9g/kg and 308.3g/kg, respectively, while the other plasticizers were not detected. DEHP was used in 4 samples of food containers and DEHP contents were 4.7g/kg, 30.7g/kg, 35.8g/kg and 53.4g/kg, respectively. In food and drug packaging materials(type of tablet and capsule), the plasticizers were not detected.

siRNA Silencing EZH2 Reverses Cisplatin-resistance of Human Non-small Cell Lung and Gastric Cancer Cells

  • Zhou, Wen;Wang, Jian;Man, Wang-Ying;Zhang, Qing-Wei;Xu, Wen-Gui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2425-2430
    • /
    • 2015
  • Clinical resistance to chemotherapeutic agents is one of the major hindrances in the treatment of human cancers. EHZ2 is involved in drug resistance and is overexpressed in drug-resistant cancer cell lines. In this study, we investigated the effects of EHZ2 on cisplatin -resistance in A549/DDP and AGS/DDP cells. EHZ2 mRNA and protein were found to be significantly overexpressed in A549/DDP and AGS/DDP cells, compared to parental cells. EHZ2 siRNA successfully silenced EHZ2 mRNA and protein expression. Proliferation was inhibited and drug resistance to cisplatin was improved. Flow cytometry showed that silencing of EHZ2 arrested A549/DDP and AGS/DDP cells in the G0/G1 phase, increasing apoptosis, rh-123 fluorescence intensity and caspase-3/8 activities. Silencing of EHZ2 also significantly reduced the mRNA and protein expression levels of cyclin D1 and MDR1,while up-regulating p15, p21, p27 and miR-218 in A549/DPP cells. Furthermore, silencing of EHZ2 also significantly increased the expression level of tumor suppressor factor miR-218. We also found down-regulating EHZ2 expression increased methylation in A549/DDP and AGS/DDP cells. This study demonstrates that drug resistance can be effectively reversed in human cisplatin-resistant lung and gastric cancer cells through delivery of siRNAs targeting EHZ2.

Proteolytic System of Streptococcus thermophilus

  • Rodriguez-Serrano, G.M.;Garcia-Garibay, M.;Cruz-Guerrero, A.E.;Gomez-Ruiz, L.;Ayala-Nino, A.;Castaneda-Ovando, A.;Gonzalez-Olivares, L.G.
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.10
    • /
    • pp.1581-1588
    • /
    • 2018
  • The growth of lactic acid bacteria (LAB) generates a high number of metabolites related to aromas and flavors in fermented dairy foods. These microbial proteases are involved in protein hydrolysis that produces necessary peptides for their growth and releases different molecules of interest, like bioactive peptides, during their activity. Each genus in particular has its own proteolytic system to hydrolyze the necessary proteins to meet its requirements. This review aims to highlight the differences between the proteolytic systems of Streptococcus thermophilus and other lactic acid bacteria (Lactococcus and Lactobacillus) since they are microorganisms that are frequently used in combination with other LAB in the elaboration of fermented dairy products. Based on genetic studies and in vitro and in vivo tests, the proteolytic system of Streptococcus thermophilus has been divided into three parts: 1) a serine proteinase linked to the cellular wall that is activated in the absence of glutamine and methionine; 2) the transport of peptides and oligopeptides, which are integrated in both the Dpp system and the Ami system, respectively; according to this, it is worth mentioning that the Ami system is able to transport peptides with up to 23 amino acids while the Opp system of Lactococcus or Lactobacillus transports chains with less than 13 amino acids; and finally, 3) peptide hydrolysis by intracellular peptidases, including a group of three exclusive of S. thermophilus capable of releasing either aromatic amino acids or peptides with aromatic amino acids.

Electrochemical Studies of Light Lantanide Complexes (Part 1) (가벼운 란탄족 원소 착물의 전기화학적 연구 (제 1 보))

  • Kang Sam-Woo;Park Chong-Min;Chang Choo-Hawn;Do Lee-Mi;Suh Moo-Yul
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.1
    • /
    • pp.83-91
    • /
    • 1993
  • The eletrochemical behavior of light lanthanide complexes has been investigated by several electrochemical techniques in alkaline solutions. The composition of the complexes was determined by spectrophotometric method to be 1 : 1 and reduction mechanism was two steps 1 electron transfer reaction. The half wave potential of first peak depended on pH and cathodic current showed remarkably adsorptive properties. The results of DC and CV investigation demonstrated the quise-reversible nature of the electron transfer. The anion radical formed after first one electron reduction process, dimerizes to form dimer. The apparent irreversible behavior of the second wave is a result of the existence of a fast protonation following the second electron transfer. An exhaustive electrolysis was carried out at controlled potential of -1.80 V, deep blue color of the solution became progressively weaker, and then the solution became colorless solution. The final product of an exhaustive electrolysis is electro-inactive. The appearance of four steps may be explained by the fact the reduction of Ln-OCP elucidated ECEC mechanism.

  • PDF

The Role and Application of Biomarkers and Surrogate Endpoints for New Drug Development : Focused on Diabetes Mellitus and Osteoporosis (당뇨병 및 골다공증 치료제의 효율적인 신약개발을 위한 생체표지자 및 대리 결과 변수의 역할 및 활용)

  • Seong, Soo-Hyeon;Yun, Hwi-Yeol;Baek, In-Hwan;Kang, Won-Ku;Chang, Jung-Yun;Seo, Kyung-Won;Kwon, Kwang-Il
    • YAKHAK HOEJI
    • /
    • v.52 no.5
    • /
    • pp.331-344
    • /
    • 2008
  • Recently, the FDA (Food and Drug Administration) of the United States and many advanced countries remark biomarkers and surrogate endpoints as a critical path tool on model based drug development. Economic, technical and social profit on model based drug development like a reduction of the length of research and development have been achieved. Therefore we summarize previous studies about biomarkers and surrogate endpoints and suggest a development direction of therapeutic agents. In diabetes mellitus (DM) and osteoporosis, there are remarkable increases in number of patients and most of patients take medicine during their whole lifetime. For this reason, many patients with DM and osteoporosis have a tolerance on their medicine. We expect that research and development on biomarkers and surrogate endpoints will contribute to new drug development on DM and osteoporosis. Biomarkers for DM are blood levels of glucose, insulin, ${HbA}_{1c}$, CRP, alpha-glucosidase, adiponectin and DPP-4. Among these, validated surrogate endpoints for DM are blood levels of glucose, insulin and ${HbA}_{1c}$ Biomarkers for osteoporosis are BMD, BMC, trabecular volume, ICTP, DPD, osteocalcin, the activity of osteoclast and production of osteoblast. The validated surrogate endpoints for osteoporosis are BMD only. This review summarizes all suggested biomarkers and surrogate endpoints in DM and osteoporosis. The biomarkers are classified by drugs, and the method of validation for surrogate endpoints is suggested. This information would contribute to suggest a direction of DM and osteoporosis therapeutic agent development.