• Title/Summary/Keyword: DPF

Search Result 213, Processing Time 0.034 seconds

Docetaxel-cisplatin-fluorouracil Induction Chemotherapy Followed by Concurrent Chemoradiotherapy Versus Concurrent Chemoradiotherapy for Locally Advanced Head and Neck Cancer : A Meta-analysis (국소진행성 두경부암에서 Docetaxel, Cisplatin, Fluorouracil 선행항암요법의 효과 및 부작용에 대한 메타분석)

  • Hwang, Ilseon;Park, Keon Uk
    • Korean Journal of Head & Neck Oncology
    • /
    • v.31 no.2
    • /
    • pp.21-28
    • /
    • 2015
  • 서론: 국소 진행성 두경부암 환자에서 선행 항암요법 후 동시 항암화학방사선요법은 원격 전이를 줄이고, 국소병변을 줄여 방사선 치료의 효과를 높이거나, 기관의 기능을 보존할 목적으로 시도된다. 선행 항암요법의 약제로 는 docetaxel, cisplatin, fluorouracil (DPF) 삼제요법이 가장 효과적인 것으로 알려져 있다. 선행 항암요법 후 동시 항암화학방사선요법과 표준치료인 동시화학방사선요법을 비교한 3상 연구들이 모두 선행 항암요법이 더 낫다는 결과를 보여 주지 못하였지만, 이 연구들은 충분한 환자를 모집하지 못하고 조기 종료된 불완전한 연구라는 한계가 있었다. 이에 저자들은 DPF 선행 항암요법 후 동시 화학방사선요법과 표준치료인 동시 화학방사선요법을 비교하는 메타분석을 시행하였다. 대상 및 방법: 체계적 문헌고찰을 통해 국소진행성 두경부암 환자를 대상으로 시행된 DPF 선행 항암요법 후 동시화학방사선요법과 현재 표준치료인 동시화학방사선요법을 비교한 5개의 3상 연구 결과를 분석하였다. 대상환자는 862 명이었고, 분석 결과 DPF 선행 항암요법 후 동시화학방사선요법은 표준치료와 비교하였을 때 반응률, 2년 및 3년 생존율, 2년 및 3년 무진행 생존율, 점막염 및 빈혈 발생 빈도에서 통계적으로 유의한 차이가 없었다. 하지만, 완전관해율과 3~4도의 백혈구감소증 및 혈소판 감소증의 빈도는 선행 항암요법 시행군에서 더 높았다. 결론: 국소진행성 두경부암의 치료에서 DPF 선행 항암요법 후 동시 항암화학방사선요법을 시행하는 것은 표준치료인 항암화학방사선요법에 비해 생존율 개선을 보이지 못하였다. 선행항암치료를 추가하는 것이 특정 환자군에서 효과가 있을지에 대해서는 추가적인 연구가 필요하다.

  • PDF

Exhaust Emission Characteristics from Heavy-duty Diesel Engine applicable to Prime Propulsion Engine for Marine Vessels (선박 주 추진기관으로 사용가능한 대형 디젤엔진의 배기가스 특성 분석)

  • Lee, Hyung-Min;Park, Rang-Eun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.484-489
    • /
    • 2012
  • The objective of this work presented here was focused on analysis of particulate matter and nitrogen oxide characteristics in ESC test mode from heavy-duty diesel engine installed on-road vehicles applicable to prime propulsion engine for marine vessels. The authors confirmed that a large quantity particulate matter were emitted in high power density condition, nitrogen oxide characteristics were dependent on exhaust gas temperature. Particulate matters were reduced by 1/100~1/1,000 times in post DPF with test modes but filtration efficiency was decreased in the engine power fluctuation. In the case of the high speed and power condition, the exhaust level of particulate matters was increased according to increment of temperature of gas flowing into DPF. The orders of magnitude for particle concentration levels from the analysis of size distribution of particulate matters of test engine was different. Both emitting nano-sized particles below 100nm regardless of DPF and non-DPF.

INJECTION STRATEGY OF DIESEL FUEL FOR AN ACTIVE REGENERATION DPF SYSTEM

  • Lee, C.H.;Oh, K.C.;Lee, C.B.;Kim, D.J.;Jo, J.D.;Cho, T.D.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.27-31
    • /
    • 2007
  • The number of vehicles employing diesel engines is rapidly rising. Accompanying this trend, application of an after-treatment system is strictly required as a result of reinforced exhaust regulations. The Diesel Particulate Filter (DPF) system is considered as the most efficient method to reduce particulate matter (PM), but the improvement of a regeneration performance at any engine operation point presents a considerable challenge by itself. Therefore, the present study evaluates the effect of fuel injection characteristics on regeneration performance in a DOC and a catalyzed CR-DPF system. The temperature distribution on the rear surface of the DOC and the exhaust gas emission were analyzed in accordance with fuel injection strategies and engine operating conditions. A temperature increase more than BPT of DPF system was obtained with a small amount fuel injection although the exhaust gas temperature was low and flow rate was high. This increase of temperature at the DPF inlet cause PM to oxidize completely by oxygen. In the case of multi-step injection, the abrupt temperature changes of DOC inlet didn't occur and THC slip also could not be observed. However, in the case of pulse type injection, the abrupt injection of much fuel results in the decrease of DOC inlet temperatures and the instantaneous slip of THC was observed.

Study on Estimation of PM Mass in DPF from Pressure Drop in 3L Diesel Engine (3L급 디젤엔진의 배압이용 DPF 매연포집량 예측에 대한 연구)

  • Kim, Hong-Suk;Lee, Jin-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.5
    • /
    • pp.499-504
    • /
    • 2010
  • It is important to determine the exact soot mass in a DPF system in order to control the timing of PM regeneration. The soot mass accumulated in a filter can be estimated from the pressure drop in the filter and the exhaust gas flow rates. In this study, the soot index is defined as the pressure drop in the DPF divided by the pressure drop in a DOC. An effective signal processing method for determining the soot index is proposed; the results yielded by this method indicate good correlation between the soot index and the amount of soot loaded into the filter for both steady-state and transient-state operating conditions in a 3L diesel engine for passenger vehicles.

Studies on Reforming Gas Assisted Regeneration of Multi-channel Catalyzed DPF (합성가스(Reforming gas)를 이용한 멀티채널 CDPF의 재생 특성 연구)

  • Choi, Kwang-Chun;Chung, Jin-Hwa;Song, Soon-Ho;Chun, Kwang-Min
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.138-145
    • /
    • 2011
  • Diesel particulate filter (DPF) systems are being used to reduce the particulate matter emission of diesel vehicles. The DPF should be regenerated after certain driving hours or distance to eliminate soot in the filter. The most widely used method is active regeneration with oxygen at $550{\sim}650^{\circ}C$. Syngas (synthetic gas) can be used to lower the regeneration temperature of Catalyzed DPF (CDPF). The syngas is formed by fuel reforming process of CPOx (Catalytic Partial Oxidation) at specific engine condition (1500rpm, 2bar) using 1wt.% $Rh/CeO_2-ZrO_2$ catalyst. The oxidation characteristics of PM with syngas supplied to filter were studied using partial flow system that can control temperature and flow rate independently. The filter is coated with washcoat loading of $25g/ft^3$ $Pt/Al_2O_3-CeO_2$, and multi-channel CDPF (MC-CDPF) was used. The filter regeneration experiments were performed to investigate the effect of syngas exothermic reaction on soot oxidation in the filter. For this purpose, before oxidation experiment, PM was collected about 8g/L to the filter at engine condition of 1500rpm, bmep 8bar and flow temperature of $200^{\circ}C$ Various conditions of temperature and concentration of syngas were used for the tests. Regeneration of filter started at 2% $H_2$ and CO concentration respectively and inlet temperature of $260^{\circ}C$. Filter Regeneration occurs more actively as the syngas concentration becomes higher.

An experimental study on the bypass-type DPF using pneumatic cylinder systems (공압 시스템을 이용한 바이패스형 매연여과장치의 실험적 연구)

  • KIM, Sang-Am
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.54 no.1
    • /
    • pp.73-80
    • /
    • 2018
  • Intermittent duty of emergency generator has problems emitting large quantities of PM and NOx in exhaust gas. The aim of this study is to propose DPF system which can be applied to medium-large emergency generators. The system is composed of soot dust collector, silencer and filter trap, which is designed to reduce PM emissions at the emergency generator start-up. The pneumatic system controls a flow direction of exhaust gas to pass through the soot collector and filter trap until the engine reaches complete combustion condition. An experiment is performed to measure PM content and concentration to analyze the performance and characteristics of the proposed system.

A Study on the Performance of the Diesel Particulate Filter made of Porous Metal with Fe-based Fuel Additive (Fe 첨가제를 적용한 금속분말 필터의 포집 및 재생 특성에 관한 연구)

  • Park, S.H.;Chun, K.M.;Cho, G.B.;Jeong, Y.I.;Park, Y.L.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.802-806
    • /
    • 2001
  • Diesel particulate trap is the most reliable system to reduce the particulate matters from diesel engine. Filter is the core component of DPF and ceramic monolith type is dominantly used, which is expensive and fragile relatively at thermal shock. Porous metal filter, which has superior thermal characteristics and low cost, was tested in order to analyze the regeneration performance by using with ferrocene additive. This filter showed the 72% filtration efficiency, additives itself diminished 48% of PM from engine out emission, and final PM reduction ratio of 89% was achieved by DPF system with D-13 test mode.

  • PDF

Effects of Aftertreatments of Emission Performance in Heavy duty diesel (후처리장치를 이용한 대형디젤기관에서의 배기성능에 관한 연구)

  • 이상준;최경호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.34-41
    • /
    • 2000
  • The purpose of this research was to investigate the effects of exhaust gas recirculation(EGR) with diesel particulate filter(DPF) on heavy duty diesel engine. The exhaust gas was recirculated to the intake manifold after the smoke was eliminated in the DPF, The major conclusions of this research are i)at each engine speed EGR ratio was able to 60% maximum ii) the amount of NOx emissions was decreased to 90% at high engine load and to more than 60% at low engine load and iii) the amout of NOx emissions was increased to five times according to the increase of engine load but the effect of EGR is more effective at high engine load.

  • PDF

A Study on Exhaust Gas of Diesel Engine with a ULSD, CR-DPF and EGR (ULSD, CR-DPF와 EGR을 적용한 디젤기관의 배출가스에 관한 연구)

  • Moon, Byung-Chul;Oh, Yong-Suk
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.5
    • /
    • pp.85-90
    • /
    • 2006
  • Since air pollution has become a globally critical issue and exhaust emissions from automobiles cause a major source of air pollution, many countries including advanced countries have stipulated stringent emission regulations. This test was conducted on the effect of continuous regeneration diesel particulate filter and cooled-EGR, and 15ppm low sulfur diesel was used as a test fuel. Exhaust emissions, PM, NOx, CO, HC and Soots were measured and compared under D-13modes. Through durability test on diesel particulate filter, regeneration characteristics and control technology on PM were investigated in overall.

Study on Multi-Dimensional Simulation of the Flow and Filtration Characteristics in Diesel Particulate Filters (DPF의 배기가스 유동 및 포집에 관한 다차원 모델링 연구)

  • Kim, Dong-Kyun;Yoon, Cheon-Seog
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.60-68
    • /
    • 2010
  • In order to understand the flow and filtration characteristics in a wall-flow type DPF(Diesel Particulate Filter), 0-D, 1-D, and 3-D simulations are preformed. In this paper, three model are explained and validated with each other. Based on the comparisons with 1-D and 3-D results for the steady state solution, 3-D CFD analysis is preferable to 1-D for the prediction of wall velocity at the inlet and exit plane. Because PM loading process is transient state phenomena, the combination of full 3-D and time dependent simulation is crucial for the configuration of wall channels. New coupling technique, which is the connection between calculated permeability from 0-D lumped parameter model and UDF(User Defined Functions) of main solver, is proposed for the realisti