• 제목/요약/키워드: DP Steel

검색결과 111건 처리시간 0.032초

다상조직강의 기계적 성질과 조직특성 (The Characteristics of Microstructure and the Mechanical Properties of Multi-Phase Sheet Steel.)

  • 박종현;강계명;송진태
    • 한국재료학회지
    • /
    • 제1권3호
    • /
    • pp.115-124
    • /
    • 1991
  • 본 실험은 페라이트-베이나이트-마르텐사이트로 되는 삼상조직강의 기계적성질과 조직특성과의 관계를 연구하고저 하였다. 이를 위하여 서로 다른 열처리경로를 택하여 페라이트+마르텐사이트에(DP), 페라이트+베이나이트(F+B)의 이상조직강과 페라이트+마르텐사이트에 연질의 베이나이트를 함유시킨 삼상조직강(TP)을 제작하였다. 이들 이상조직강가 삼상조직강의 인장특성, 충격특성 및 stretch-flangeability를 측정하여 각각의 조직구성과 상호연관지어 금속조직학적으로 연구, 조사하였다. 실험결과, TP강의 경우 베이나이트 부피분율의 증가에 따라서 인장강도와 항복강도는 감소하나, 단면수축율 및 강도-연성 조합은 증가하였고, 페라이트와 베이나이트로 구성된 F+B강에서는 항복현상과 높은 항복비를 보였다. 충격특성은 DP강보다 TP, F+B강에서 향상된 충격에너지값을 얻을 수 있었고, hole expanding limit($\lambda$)시험에서도 DP강보다는 TP, F+B강이 우수한 $\lambda$값을 나타내었다. 이와같은 기계적성질의 향상은 베이나이트의 영향에 의한 결과로서, 이는 경질의 마르텐사이트보다는 연질의 베이나이트ㅏ 페라이트기지와 함께 쉽게 변형이 일어나 연성의 증가에 보다 크게 작용하였기 때문이라 생각한다. 본실험의 경우 27%범위의 베이나이트를 함유하는 삼상조직강에서 좋은 기계적 성질과 우수한 stretch-flangeability를 보였다.

  • PDF

Cu-Sn 삽입금속을 이용한 DP강의 아크 브레이징 접합부의 미세조직과 인장특성 (Microstructure and Tensile Strength Property of Arc Brazed DP steel using Cu-Sn Insert Metal)

  • 조욱제;조영호;윤중길;강정윤
    • Journal of Welding and Joining
    • /
    • 제31권1호
    • /
    • pp.58-64
    • /
    • 2013
  • The following results were obtained, microstructures and tensile properties in arc brazed joints of DP(dual phase) steel using Cu-5.3wt%Sn insert metal was investigated as function of brazing current. 1) The Fusion Zone was composed of ${\alpha}Fe+{\gamma}Cu$ and Cu23Sn2. The reason for the formation of these solid solutions. Despite, Fe & Cu were impossible to solid solution at room temperature. It's melting & reaction to something of insert metal & Base Metal (DP Steel) by Arc. Brazing Process has faster cooling rate then Cast Process, Supersaturated solid solution at room temperature. 2) The increase Hardness of Fusion Zone was directly proportional to the rise of welding current. Because, ${\alpha}Fe+{\gamma}Cu$ phase (higher hardness than the Cu23Sn2.(104.1Hv < 271.9Hv)) Volume fraction was Growth, due to increasing the amount of base metal melting by High current. 3) The results of tensile shear test by Brazing, All specimens happen to fracture in Fusion Zone. On the other hand, when Brazing Current increasing tend to rise tensile load. but it was very small, about 26-30% of the base metal. 4) The result of fracture analysis, The crack initiate at Triple Point for meet to Upper B.M/Under B.M/Fusion Zone. This Crack propagated to Fusion zone. So ruptured by tensile strength. The Reason to in the fusion zone fracture, Fusion zone by Brazing of hardness (strength) was very lower then the base metal (DP steel). In addition the Fusion Zone's thickness in triple point was thin than the base metal's thickness in triple point.

다상조직강의 조직 분율에 따른 수소주입의 영향 (The Influence of Hydrogen Charging with the Volume Fraction of Phases in Dual Phase Steels)

  • 김한상;강계명
    • 한국표면공학회지
    • /
    • 제45권6호
    • /
    • pp.284-288
    • /
    • 2012
  • A study on microstructure control of multi-phase steel have been implemented to higher strength with improved formability. However, it is well known that the high strength of steel are susceptible to hydrogen embrittlement. The mechanisms of hydrogen embrittlement is caused by complex interactions. In this paper, the test specimens were fabricated to 5 type of 590DP steels at different levels of volume faction. The hydrogen charging was conducted by electrochemical hydrogen-charge method with varying charging time. The relationship between hydrogen concentration and volume fraction of 590DP steel was established by SP test and SEM-fractography. It was shown that the hydrogen amounts charged in 590DP steels increased with increasing the volume faction of austenite. The maximum loads of the 590DP steels in SP test were sharply decreased with increasing hydrogen charging time. The results of SEM-fractography investigation showed typical brittle-fracture surfaces for hydrogen-charged 590DP steels.

DP강의 디프드로잉 시 집합조직 발달과 이방성 거동 시뮬레이션 (Simulation of Texture Evolution and Anisotropy Behavior in Dual Phase Steels during Deep Drawing Process)

  • 송영식;김대완;양회석;한성호;진광근;최시훈
    • 대한금속재료학회지
    • /
    • 제47권5호
    • /
    • pp.274-282
    • /
    • 2009
  • To investigate the evolution of deformation texture in dual phase (DP) steels during deep-drawing deformation, deep-drawing experiments were performed. Microtexture measurements were conducted using electron backscattered diffraction (EBSD) to analyze texture evolution. A rate-sensitive polycrystal model was used to predict texture evolution during deep-drawing deformation. In order to evaluate the strain path during deep-drawing deformation, a steady state was assumed in the flange part of a deep-drawn cup. A ratesensitive polycrystal model successfully predicted the texture evolution in DP steels during deep-drawing deformation. The final stable orientations were found to be strongly dependent on the initial location in the blank. Texture analysis revealed that the deep drawability of DP steels decreases as the true strain in the radial direction of the deep-drawn cup increases during deep-drawing deformation.

고장력강의 구멍 확장 실험을 이용한 자동차부품 설계연구 (A Study of Automobile Product Design using Hole Expansion Testing of High Strength Steels)

  • 박병철;배경운;구선모;장승현;홍성훈;김영석
    • 소성∙가공
    • /
    • 제19권6호
    • /
    • pp.337-343
    • /
    • 2010
  • Current need of weight reduction in automotive part increases the application for high strength steel (HSS). The various types of high strength steels have been used to produce chassis part, control arms and trailing arms for weight reduction and increasing of fatigue durability such as dual phase steel (DP) and ferrite bainite steel (FB). But, DP and FB steels have proven to show inferiority in durability as well as press formability. Edge cracking occurred often in flange forming and hole expansion processes is the major failure encountered. This paper discussed the behavior of edge stretchability of high strength steel of DP and FB steels. Experimental works have been conducted to study the effect of punch clearance and burr direction on hole expansion ratio (HER). Also finite element simulation (FEM) has been preformed to clarify the mechanism of flange crack and support the experimental results on HER of DP and FB steels. It was simulated the whole process of blanking process following by hole expansion process and ductile fracture criterion named the modified Cockcroft-Latham model which was used to capture the fracture initiation. From the hole expansion tests and FEM simulation studies it was concluded that ferrite bainite steel showed better stretch-flangeability than dual phase steel. It was attributed to the lower work hardening rate of ferrite bainite steel than dual phase steel at the sheared edge.

3 차원 유한요소해석을 이용한 자유경계조건에서의 두께 1.7 mm DP780 고강도 강판의 저 속 충격 특성 분석 (A Study on Low Velocity Impact Characteristics of DP 780 High Strength Steel Sheet with Thickness of 1.7 mm on the Free Boundary Condition Using Three-Dimensional Finite Element Analysis)

  • 안동규;남경흠;성대용;양동열;임지호
    • 한국정밀공학회지
    • /
    • 제27권11호
    • /
    • pp.46-56
    • /
    • 2010
  • The present research works investigated into the low velocity impact characteristics of DP 780 high strength steel sheet with 1.7 mm in thickness subjected to free boundary condition using three-dimensional finite element analysis. Finite element analysis was carried out via ABAQUS explicit code. Hyper-elastic model and the damping factor were introduced to improve an accuracy of the FE analysis. An appropriate FE model was obtained via the comparison of the results of the FE analyses and those of the impact tests. The influence of the impact energy and nose diameter of the impact head on the force-deflection curves, impact time, absorption characteristics of the impact energy, deformation behaviours, and stress-strain distributions was quantitatively examined using the results of FE analysis. The results of the FE analysis showed that the absorption rate of impact energy lies in the range of the 70.7-77.5 %. In addition, it was noted that the absorption rate of impact energy decreases when the impact energy increases and the nose diameter of the impact head decreases. The local deformation of the impacted region was rapidly increased when the impact energy was larger than 76.2 J and the nose diameter was 20 mm. A critical impact energy, which occur the instability of the DP780, was estimated using the relationship between the plastic strain and the impact energy. Finally, characteristics of the plastic energy dissipation and the strain energy density were discussed.

DP590 고장력 강판 성형을 위한 굽힘 금형 설계에 관한 연구 (A Study on the Design of Bending Dies for Forming of DP590 High Strength Steel Sheet)

  • 천정필;안동규
    • 소성∙가공
    • /
    • 제33권1호
    • /
    • pp.43-49
    • /
    • 2024
  • A high strength steel sheet (HSSS) has widely used to improve the specific rigidity of parts and the safety of the passenger in automotive industries. However, the HSSS is difficult to manufacture precise parts through a forming process due to the reduced elongation and the increased elastic recovery. The goal of the paper is to investigate the improved design of bending dies for DP590 HSSS. The over forming type bending dies with cam systems added to the side of the formed part is proposed to improve the quality of the part. The effects of the die design and the forming parameter on formability and elastic recovery characteristics is examined using finite element analyses (FEAs). From the results of FEAs, proper die design and forming parameters are predicted.

블로우 모터 케이스 이음부 기계적 결합 강도 예측에 관한 연구 (Study on Prediction of Mechanical Joining Strength of Blow Motor Case Joint)

  • 김국용;권일근;박준우
    • 한국산업융합학회 논문집
    • /
    • 제20권1호
    • /
    • pp.81-87
    • /
    • 2017
  • In order to reduce the weight of the blow motor case and to maintain the strength of the motor joint, the mechanical joining strength is to be predicted. The true stress - true strain curves for finite element analysis were obtained through tensile tests of HGI and DP 780 steel. The mechanical joining strength was predicted through an explicit finite element analysis and the accuracy of the predicted results was verified by actual sample test. The regression equation for predicting the mechanical joining strength to the thickness of the DP 780 steel was derived. The minimum thickness of DP 780(1.2mm), which is equivalent to the joining strength of HGI(2.6mm), was derived from the equation.

용접부의 영향을 고려한 하이드로포밍된 자동차용 DP강관의 충돌 특성 평가 (Crash Performance Evaluation of Hydro-formed Automotive DP-Steel Tube Considering Welding Heat Effects)

  • 정경환;권혁선;박성호;노동성;정관수
    • 소성∙가공
    • /
    • 제15권8호
    • /
    • pp.568-573
    • /
    • 2006
  • In order to numerically evaluate automotive hydro-formed DP-steel tubes on crash performance considering welding heat effects, the finite element simulations of crash behavior were performed for hydro-formed tubes with and without heat treatment effects. This work involves the mechanical characterization of the base material and the HAG-welded zone as well as finite element simulations of the crash test of hydro-formed tubes with welded brackets and hydro-forming of tubes. The welding heat effects on the crash performance are evaluated in efforts to improve the process optimization procedure of the engine cradle in the design stage. In particular, FEM simulations on indentations have been performed and experimentally verified for material properties of weld zone and heat affected zone.

영구연화거동을 고려한 마찰교반용접(FSW)된 DP590 강판의 탄성복원 예측 (Springback Prediction of Friction Stir Welded DP590 Steel Sheet Considering Permanent Softening Behavior)

  • 김준형;이원오;정경환;박태준;김돈건;;김대용
    • 소성∙가공
    • /
    • 제18권4호
    • /
    • pp.329-335
    • /
    • 2009
  • In order to better predict the springback for friction stir welded DP590 steel sheet, the combined isotropic-kinematic hardening was formulated with considering the permanent softening behavior during reverse loading. As for yield function, the non-quadratic anisotropic yield function, Yld2000-2d, was used under plane stress condition. For the verification purposes, comparisons of simulation and experiments were performed here for the unconstrained cylindrical bending, the 2-D draw bending tests. For two applications, simulations showed good agreements with experiments.