• 제목/요약/키워드: DOWN-SWING

검색결과 77건 처리시간 0.019초

Differences in Lower Extremity Electromyographic Responses Based on Foot Position and Swing Phase in Golf Driver Swings

  • Young-Jin Chi;Hwan-Jong Jeong;Byung-Kwan Kim
    • International journal of advanced smart convergence
    • /
    • 제12권4호
    • /
    • pp.426-433
    • /
    • 2023
  • The purpose of this study was to investigate the muscle activity of the lower extremity during driver swing in three-foot positions (Feet Open Stance, Feet Straight Stance, Lead Foot Open Stance). The electromyograms of gastrocnemius, tibialis anterior, and vastus lateralis during swing were measured and analyzed in three sections (take away - back swing, back swing - down swing, and down swing - follow swing). There was no significant difference in muscle activity according to foot position. Muscle activity according to phase was significantly higher in right gastrocnemius and tibialis anterior, and the left and right vastus lateralis in down swing - follow swing. In conclusion, the difference in muscle activity according to foot position is insignificant, and it is considered that the muscle activity to maintain the balance of the body increases toward the end of swing.

Analysis of Lumbar Spine Load during Golf Swing in Pro. Golfer

  • Park, Sung-Kyu;Cho, Woong;An, Ho-Jung
    • 국제물리치료학회지
    • /
    • 제1권2호
    • /
    • pp.162-168
    • /
    • 2010
  • Low back pain is a common phenomenon among the golfers. In an attempt to understand low back pain, the kinematic changes and golf swing motion analysis has been performed to focus on lumbar spine in pro. golfers. According to the swing pattern, significant variations of the lumbar joint forces and loads has related with muscles activities so the motion analysis of lumbar spine were discussed. The purpose of this study was to analyze motion of lumbar spine and it was to compare joint force during golf swing in pro. golfers. The swing motion of the subjects was tracked using a 3D motion analysis system by Motion Analysis Ltd. and SIMM software. The angle changes of lumbar spine rapidly in vx direction during the top back swing and the finish and in vy direction during the follow through and in vz direction during the down swing and the impact(Subject A). The angle changes of lumbar spine rapidly in vx direction during the top back swing and in vy direction during the down swing, the impact and the follow through and in vz direction during the down swing(Subject B). In conclusion, subject A and B both show sudden angle changes between 1st-3rd lumbar spine and 4th-5th lumbar spine during the stage from address to top back swing which caused by over upper body twisting.

  • PDF

다운증후군 아동의 T-ball 스윙 시 근육활동 규명 (Muscle Activity in T-ball Swing with Down Syndrome's Children)

  • 한기훈;임비오
    • 한국운동역학회지
    • /
    • 제18권4호
    • /
    • pp.143-149
    • /
    • 2008
  • 본 연구의 목적은 다운증후군 아동들의 T-ball 스윙 중에 작용하는 근육의 활동을 규명하는 것이다. 다운증후군을 가진 남자 아동 5명을 대상으로 T-ball 스윙 중에 중요하게 작용하는 pectoralis major, upper serratus, lat dorsi, anterior deltoid, rhomboids, infraspinatus, posterior deltoid의 근육활동을 노락슨 8채널 무선 근전도 측정시스템을 사용하여 시작-백스윙, 백스윙-임팩트, 임팩트-팔로스루 구간으로 나누어 분석하였다. 다운증후군 아동들은 정상아동 및 성인선수들보다 시작-백스윙 구간 및 백스윙-임팩트 구간에서 오른쪽 및 왼쪽 상체 부위의 근육활동이 더 두드러지게 나타났다. 반면에 임팩트-팔로스루 구간에서는 정상아동 및 성인선수들에 비해 더 적은 근육활동이 나타났다. 특히 임팩트 후 팔로스루 구간에서 어깨 수평 내전근인 pectoralis major와 견갑골 외전 및 상방 회전근인 upper serratus 근육의 활동 강화가 필요한 것으로 나타났다.

평행봉 Tippelt 기술 훈련 프로그램 개발 및 향상도 평가 분석 (A Study about the Training Program for the Tippelt Technique on the Parallel Bars)

  • 백진호;박종철;윤창선
    • 한국운동역학회지
    • /
    • 제18권2호
    • /
    • pp.29-39
    • /
    • 2008
  • 본 연구는 평행봉 티펠트 기술에 대한 훈련 프로그램을 개발하여 8주간 적용하고 프로그램 전과 후의 차이를 3차원 영상분석법을 사용, 운동학적으로 비교 분석을 통해 기술별 동작의 향상도 및 특성을 규명하고자 하였다. 훈련 프로그램은 다운스윙 보강운동, 업스윙 보강운동, 다운스윙과 업스윙을 연결하는 보강운동으로 구성하여 실시하였으며, 견관절을 신전시켰다가 가슴을 오목하게 빠르게 모아주는 다운스윙의 훈련으로 견관절을 신전시켜 신체중심을 후방으로 크게 하강하는 모습으로 개선되었다. 수직방향으로 빠르게 다리를 차주면서 상체를 세워주는 업스윙의 훈련결과 신체중심이 전방으로 흐르지 않으면서 수직방향으로 신체중심을 빠르게 상승시키는 모습으로 개선되었다. 업스윙의 훈련 시 상승하면서 전방으로 신체중심이 크게 이동하지 않도록 통제하면서 봉의 탄성을 이용하면서 고관절을 빠르게 신전시켜 상체를 튕겨 주는듯한 느낌으로 상승하도록 지도하여야 한다. 다운스윙에서 업스윙으로의 동작을 연결하는 훈련에서는 신체중심을 후방으로 크게 하강하였다가 빠르게 수직 상승하여 체공시간을 확보하면서 다리가 굽혀지지 않도록 지도하여야 하며, 훈련결과 체공시간의 증가로 안정된 동작으로 동작이 완성되는 모습으로 개선되었다.

대학 골프 선수의 Pitching wedge 스윙동작의 운동학적 특성 분석 (Kinematical Analysis of Pitching wedge swing motion in University Golfer)

  • 백진호;윤동섭;김재필
    • 한국운동역학회지
    • /
    • 제13권3호
    • /
    • pp.133-149
    • /
    • 2003
  • The purposes of present study were to determine the major check-points of golf swing from the review of previous studies, and to suggest additional information on the teaching theory of golf. The golf swing motion of 6 male and female elite university golf players were filmed with 16mm Locam II high speed cameras at the speed of 200f/s, and variables such as time, displacement, angle, velocity were calculated and analyzed by 3D Cinematography using DLT method. The results were: 1. Differences were shown in the ratio of weight distribution on the feet, cocking angle, take-back velocity, club-head velocity at impact depending upon the physical characteristics and club used for swing. 2. Time for the down-swing and impact were $0.27{\sim}0.29s$ in men and $0.29{\sim}0.32s$ in women, which was 1/3 of the time for the back-swing. Women showed longer total swing time than men because of longer time in back-swing, follow-through and finish. 3. Men showed larger range of motion in shoulder and knee joints than women, on the other hand women showed larger range of motion in hip joint than men. 4. Cocking motion and right elbow flexion were occurred at the top of back-swing and cocking release was occurred at the moment of impact. Maximum rotations of shoulder and hip joints were found between the top of back-swing and down-swing phase. 5. Women showed lower back-swing velocity than men, and men showed higher club velocity(men: $38.2{\sim}38.6m/s$, women: $35.1{\sim}36.4m/s$) than women.

다기능성 웨어 착용이 골프 드라이브 스윙에 미치는 효과 (Effects of golf drive swing on multiple functional wear wearing)

  • 김정우;박선경;어미경
    • 복식문화연구
    • /
    • 제22권4호
    • /
    • pp.632-639
    • /
    • 2014
  • The purpose of this study was to verify the effect of drive swing on multiple functional wear wearing in golf. The subjects were 6 men ($22.67{\pm}0.82$ yrs, $175.42{\pm}3.42cm$, $78.75{\pm}4.78kg$), who had career each with at least 8 yers golf experience with right-hander. For kinemetical analysis, this study used equipments with 7 motion capture cameras (300Hz) and analysis program (Nexus1.5). The total time of the club head, displacement magnitude of the COM and swing plane were compared of according to functional wear wearing and non-weraing during golf drive swing. The results of the study are as follows. The total time of the club on wearing ($2.18{\pm}0.06sec$) was faster than non-wearing ($2.52{\pm}0.15sec$). Displacement magnitude of the COM on wearing ($4.06{\pm}0.67cm$) was shorter than non-wearing ($5.79{\pm}0.72cm$). Also, swing plane was found to be significantly different of 3 phase excepted BST-DS (back swing top-down swing) phase. AD-BST (address-back swing top) phase on wearing ($13.86{\pm}3.08cm$) decrease more than non-wearing ($20.82{\pm}3.99cm$), DS-IP (down swing-impact) phase on wearing ($6.25{\pm}1.35cm$) decrease more than non-wearing ($7.18{\pm}1.52cm$) and IP-FT (impact-follow though) phase on wearing ($7.93{\pm}2.09cm$) decrease more than non-wearing($9.68{\pm}2.02cm$). The multiple functional wear wearing was contribution to come close for one-plane, a long with consistency and accuracy on golf drive swing.

아마추어골퍼들의 스윙 오류에 관한 연구 (A Study of Golf Swing Errors of Amateur Golfer)

  • 임정;전철우;정재욱
    • 한국운동역학회지
    • /
    • 제16권2호
    • /
    • pp.165-174
    • /
    • 2006
  • The purpose of this study was to review the relevant literature about coaching and thereupon, survey the coaching methods used for golfer lesson to reinterpret them and thereby, describe in view of kinetics the swing errors committed frequently by amateur golfers and suggest more scientific golfer coaching methods. For this purpose, kinetic elements were divided into precision and power ones and therewith, the variables affecting such elements were identified. On the other hand, swings were divided into address, take-back, back-swing, back-swing top, down-swing, impact and follow-through to determine 20 variables for each form and thereby, define their errors to determine the relations between their frequency and errors. For this study, a total of 60 amateur golfer were sampled, and their swing forms were photographed with two high-speed digital cameras, and the resultant images were analyzed to determine the errors of each form kinetically, which would be analyzed again with the program V1-5000. The results of this study can be summarized as follows; The kinetic elements could be identified as precision, power and precise power. Thus, setup and trajectory were classified into precision elements, while differences of inter-joint angles, cocking and delayed hitting. Lastly, timing and axial movement were classified into precise power elements. Three errors were identified in association with setup. The errors related with trajectory elements accounted for most (7) of the 20 errors. Three errors were determined for inter-joint angle differences, and one error was associated with cocking and delayed hitting. Lastly, one error was classified into timing error, while five errors were associated with axial movement. Finally, as a result of arranging the errors into a cross table, it was found that the errors were associated with each other between take-back and back-swing, take-back and follow-through, back-swing and back-swing top, and between back-swing and down-swing. Namely, an error would lead to other error repeatedly. So, it is more effective to identify all the errors for every form and correct them comprehensively rather than single out the errors and correct them one by one.

골프 스윙 시 경사면에 따른 지면 반력 분석에 관한 연구 (The Analysis of GRF during Golf Swing with the Slopes)

  • 문곤성;최희석;황선홍;김영호
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권2호
    • /
    • pp.187-194
    • /
    • 2007
  • The purpose of this study is to determine the characteristics of ground reaction force(GRF) in golf swing for various slopes of flat lie and uphill lies of 5 and 10 degrees. Five right-handed professional golfers were selected for the experiment and the 7 iron club was used. We used four forceplates to measure GRF and synchronized with the three-dimensional motion analysis system. Results showed that slope did not affect the total time for golf swing, but the time until the impact had a tendency to slightly increase for the uphill lie(p<0.05). The medial-lateral GRF of the right foot increased toward the medial direction during back swing, but less increases were found with the angle of uphill lie(p<0.05). The GRF of the left foot increased rapidly toward the medial direction at the uncocking and the impact during down swing, but decreased with the increase in the angle of uphill lie(p<0.05). The anterior-posterior GRF of both feet showed almost the same for different slopes. With the slopes, the vertical GRF of the right foot increased, but the vertical GRF of left foot decreased(p<0.05). Uphill lies would have negative effect to provide the angular momentum during back swing, restricting pelvic and trunk rotations, and to provide the precise timing and strong power during down swing, limiting movements of body's center of mass. The present study could provide valuable information to quantitatively analyze the dynamics of golf swing. Further study would be required to understand detailed mechanism in golf swing under different conditions.

경사면에서 골프스윙 동작시 족저압력 분석 (Influence of Different Slope Analysis during Pitching Wedge Swing on Plantar Pressure Distribution Pattern)

  • 손동주;양정옥;이중숙
    • 한국운동역학회지
    • /
    • 제19권2호
    • /
    • pp.297-309
    • /
    • 2009
  • 이 연구에서는 피칭웨지 스윙 시 족저압력 측정기를 이용하여 평지, 오르막 내리막경사면에서의 족저압력분포의 메카니즘을 분석하여 운동역학적인 기초자료를 제공하고자 피험자는 KPGA 3명, KLPGA 3명을 대상으로 족저압력분포를 측정한 후 스윙시간, 동작특성, 평균족저압력 그리고 최대족저압력을 분석한 결과 경사면의 형태변화에 따른 스윙동작 시 구간별 시간변인과 족저압력변인들을 종합적으로 분석 결과 경사면에서의 스윙동작은 백스윙 과정에서 하지의 코일링 동작을 방해하는 요인이 될 수 있으며, 다운스윙과정에서도 체중분산을 최소화시키는 하지의 블로킹 동작과 이 후 릴리스 동작에도 부정적인 영향을 미치는 것으로 분석되었다. 또한 경사면은 스윙동작에 영향을 미칠 수 있는 많은 외적 요인들 중의 하나인데, 오르막경사면에서의 어드레스 자세는 하지의 움직임을 제한하기 때문에 약간 좁은 스탠스를 유지하고, 내리막경사에서는 반대로 하지의 더 큰 활동성을 막기 위하여 더 넓은 스탠스를 가져야 할 것으로 판단되며, 어드레스 자세에서 뿐만 아니라 오르막경사의 다운스윙 동안에도 가능한 신체균형을 유지시키기 위하여 체중을 왼발에 두어야 할 것으로 판단된다.

발전소 주급수 계통 감발 과정에서의 스윙체크밸브 닫힘 시점의 실험적 결정 (An Experimental Determination of a Swing Check Valve Closure Time in the Main Feed Water System of a Power Plant during Shut-down Process)

  • 서진성;김원민
    • 한국소음진동공학회논문집
    • /
    • 제19권8호
    • /
    • pp.843-849
    • /
    • 2009
  • The reliable operation of a swing check valve in the main feed water system of a power plant is most essential for successful shout-down process. A failure to close the valve at proper time often leads to the instability of the main feed water system, or even to an emergency stop of the power plant. In reality it is a very difficult task to monitor the behavior of a swing check valve. Furthermore it is impossible to see the motion of the valve. In this work two measurements were carried out simultaneously to determine the precise valve closure time. The dynamic pressure measurements were made at the inlet and outlet regions of the swing check valve. The transient vibration of the valve housing in the direction of water flow was also measured, which enabled the measurement of the transient vibration of the valve housing near valve closure. By comparing the results produced from these measurements the precise valve closure time could be determined. By carrying out order tracking technique using the dynamic pressure signals and pump rpm signal, the complicated dynamic problems inside the main feed water system can be more easily dealt with. This measurement scheme might be implemented in a power plant on a real-time basis without much difficulty. If this could be implemented, valuable information essential for shut-down operations can readily be passed on to the main control room. The feasibility of this implementation was demonstrated by this experimental work.