• Title/Summary/Keyword: DOPPLER

Search Result 2,266, Processing Time 0.037 seconds

3D Visualization System of Blood Flow Reconstructed using Curvature Estimation (곡률 추정을 이용하여 재건된 혈류의 3차원 가시화 시스템)

  • Kwon, Oh-Seo;Yoon, Joseph;Kim, Young-Bong
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.2
    • /
    • pp.224-232
    • /
    • 2016
  • The methodology to visualize the shape of blood vessel and its blood flow have been attracting as a very interesting problem to forecast and examinate a disease in thrombus precursor protein. May previous visualization researches have been appeared for designing the blood vessel and also modeling the blood flow using a doppler imaging technique which is one of nondestructive testing techniques. General visualization methods are to depict the blood flow obtained from doppler effects with fragmentary stream lines and also visualize the blood flow model using volume rendering. However, these visualizeation techniques have the disadvantage which a set of small line segments does not give the overall observation of blood flows. Therefore, we propose a visualization system which reconstruct the continuity of the blood flow obtained from doppler effects and also visualize the blood flow with the vector field of blood particles. This system will use doppler phase difference from medical equipments such as OCT with low penetration and reconstruct the blood flow by the curvature estimation from vector field of each blood particle.

Gaussian Interpolation GPSAM Method to Overcome Fast Fading in High Speed Mobile Environments (고속 모바일 환경에서 fast 페이딩 극복을 위한 가우시안 보간 GPSAM 기법)

  • Kim, Jeong-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3482-3486
    • /
    • 2013
  • In the case of the Pilot Symbol Assisted Modulation (PSAM) method predicting and compensating amplitude and phases caused on fading channels, there can be severe performance deterioration by Doppler spread on fast fading channels. In this paper, the fading compensation method suggested so as to improve occurring problems as well as analyze them. Doppler spread is the major cause of the bit error rate(BER) performance deterioration. Compared to the existing PSAM method, the more performance deterioration occurs, the larger Doppler spread appears but performance shows well its less $10^{-2}BER$ performance than the existing PSAM method in the suggested method whereas the existing PSAM method has about $10^{-1}BER$ its considerable performance deterioration that caused by Doppler spread within a symbol cycle with the level of delay wave interference.

A Compact Ka-Band Doppler Radar Sensor for Remote Human Vital Signal Detection

  • Han, Janghoon;Kim, Jeong-Geun;Hong, Songcheol
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.4
    • /
    • pp.234-239
    • /
    • 2012
  • This paper presents a compact K-band Doppler radar sensor for human vital signal detection that uses a radar configuration with only single coupler. The proposed radar front-end configuration can reduce the chip size and the additional RF power loss. The radar front-end IC is composed of a Lange coupler, VCO, and single balanced mixer. The oscillation frequency of the VCO is from 27.3 to 27.8 GHz. The phase noise of the VCO is -91.2 dBc/Hz at a 1 MHz offset frequency, and the output power is -4.8 dBm. The conversion gain of the mixer is about 11 dB. The chip size is $0.89{\times}1.47mm^2$. The compact Ka-band Doppler radar system was developed in order to demonstrate remote human vital signal detection. The radar system consists of a Ka-band Doppler radar module with a $2{\times}2$ patch array antenna, baseband signal conditioning block, DAQ system, and signal processing program. The front-end module size is $2.5{\times}2.5cm^2$. The proposed radar sensor can properly capture a human heartbeat and respiration rate at the distance of 50 cm.

Target Velocity Estimation using FFT Method

  • Lee, Kwan Hyeong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.1-8
    • /
    • 2020
  • This paper studied a method of estimating target information using a radar in wireless communication. Position information on the target can be estimated angle, distance and velocity. The velocity information can be estimated since the Doppler frequency is changed in the moving target. The signal incident on the receiving array antenna is multiplied by the delay time and the reference signal to represent the output signal. This output signal is estimated by applying FFT (Fast Fourier Transform) after calculating signal correlation through correlation integrator. Since the output signal must be calculated within the correlator, it should be processed with the Dwell time. The correlation signal of the correlation integrator outside this Dwell time is indicated by the velocity measurement error. The FFT is applied to the signal that has passed through the correlated integrator in order to estimate the distance of the signal. The Doppler resolution must be improved because the FFT estimates target information using the Doppler information. The Doppler resolution decreases with increasing the integration time. The velocity information estimation should have no spread of the velocity. As a result of the simulation, there was no spread of the target velocity in this study.

Construction of Ultrasound Pulsed Doppler Velocimeter (펄스 초음파 도플러 속도계의 제작에 관한 연구)

  • 현석봉;김수용;이재수
    • Progress in Medical Physics
    • /
    • v.5 no.1
    • /
    • pp.25-39
    • /
    • 1994
  • To measure the velocity of heart wall and local flow transctaneously in blood vessels, we have developed a single channel 3.1 MHz pulsed ultrasonic Doppler velocity meter. Ultrasound pluse width and repetition frequency (PRF) used in the velocity meter is 1 ${\mu}$sec 6kHz reapectively, and the Doppler shift of the backscattered echo signal is sensed in a phase detector by coherent demodulation method. From the output of the phase detector, the Doppler signal corresponding to the mean velocity of acoustic wave scatterers over a small region is obtained by using a range gate, sample holder and band-pass filter. Mean frequency of Doppler signal is estimated by zero-crossing counter and the instantaneous velocity of scatters is displayed as a function of time. It is possible to estimate velocity profile, volume flow and flow acceleration of vessels in man if the number of channels and range resolution in increased.

  • PDF

Enhancement of SNR Characteristics in Ultrasound Doppler Color Flow Mapping (초음파 도플러 컬러 유동 사상에서 신호 대 잡음비 특성의 향상)

  • Kwon, Sung-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.5
    • /
    • pp.2261-2266
    • /
    • 2011
  • Being the most widely used in ultrasound Doppler color flow mapping, the Kasai algorithm, also known as lag-1 autocorrelation method, is capable of estimating the Doppler mean frequency relatively accurately with a modest amount of computation. Particularly in the case of imaging deep lying areas, however, its performance suffers due to low signal-to-noise ratios. The purpose of this paper is to propose a dealiased lag-2 autocorrelation method which is superior to the Kasai algorithm even at low signal-to-noise ratios and to compare their performances through simulations. The proposed algorithm is found to be better by about 2 to 3 dB than the Kasai algorithm in terms of Doppler mean frequency estimation error in the presence of measurement noise.

Improvements of Pulse Doppler Gap Filling Algorithms for Portable Medical Ultrasound Imaging System (휴대용 초음파진단기를 위한 펄스 도플러 갭 필링 알고리즘의 개선)

  • Bae, MooHo;An, Hyung-Jun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.8
    • /
    • pp.580-589
    • /
    • 2012
  • In this paper, we studied on Doppler gap-filling algorithms suitable for a portable or low-cost medical ultrasound imaging system, and as a result, found out algorithms based on mirroring or autoregressive model. Moreover, controlling the computational demand in the proper range, we improved the performances of these algorithms by solving their problems. Effectiveness of these modified algorithms is verified by computer simulations and experiments which used artificially generated Doppler signals and Doppler data acquired from human body through an actual ultrasound system.

Development of Alarm Service Using Doppler Radar Sensor (도플러 레이더 센서를 이용한 알람 서비스 개발)

  • Shin, Hyun-Jun;Choi, Doo-Hyun;Oh, Chang-Heon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.3
    • /
    • pp.623-628
    • /
    • 2015
  • The paper produced an application that used Doppler radar sensor to prevent bicycle related accidents. Doppler radar sensor detects any approaching object and gives warning to the user through the danger detection algorithm of the application. The danger detection algorithm determines danger by comparing relative speed using the sensed approaching object and Doppler frequency. It also sends SMS to the preset contact to let him/her be informed of the critical situation in which the user lies when an accident happens. The experiment result showed that the algorithm judged danger by detecting the approach status and speed as well as sent out SMS to the set contact under the assumption that there was an accident.

Performance Analysis of the Inversion Schemes in the Spotlight-mode SAR(Synthetic Aperture Radar) (Spotlight-mode SAR(Synthetic Aperture Radar)에서의 Inversion 기법 성능 분석)

  • 최정희
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.1
    • /
    • pp.130-138
    • /
    • 2003
  • The classical image reconstruction for stripmap-mode Synthetic Aperture Radar is the Range-Doppler algorithm. When the spotlight-mode SAR system was envisioned, Range-Doppler algorithm turned out to fail rapidly in this SAR imaging modality. Thus, what is referred to as Polar format algorithm, which is based on the Plane wave approximation, was introduced for imaging from spotlight-mode SAR raw- data. In this paper, we have studied for the raw data processing schemes in the spotlight-mode Synthetic Aperture Radar. We apply the Wavefront Reconstruction scheme that does not utilize the approximation in spotlight-mode SAR imaging modelity, and compare the performance of target imaging with the Polar format inversion scheme.

Development of Dual Beam High Speed Doppler OFDI

  • Kim, SunHee;Park, TaeJin;Oh, Wang-Yuhl
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.3
    • /
    • pp.283-288
    • /
    • 2013
  • This paper describes development of a high speed Doppler OFDI system for non-invasive vascular imaging. Doppler OFDI (optical frequency domain imaging) is one of the phase-resolved second generation OCT (optical coherence tomography) techniques for high resolution imaging of moving elements in biological tissues. To achieve a phase-resolved imaging, two temporally separated measurements are required. In a conventional Doppler OCT, a pair of massively oversampled successive A-lines is used to minimize de-correlation noise at the expense of significant imaging speed reduction. To minimize a de-correlation noise between targeted two measurements without suffering from significant imaging speed reduction, several methods have been developed such as an optimized scanning pattern and polarization multiplexed dual beam scanning. This research represent novel imaging technique using frequency multiplexed dual beam illumination to measure exactly same position with aimed time interval. Developed system has been verified using a tissue phantom and mouse vessel imaging.