• Title/Summary/Keyword: DOF(Degree of Freedom)

Search Result 347, Processing Time 0.026 seconds

A Micro-robotic Platform for Micro/nano Assembly: Development of a Compact Vision-based 3 DOF Absolute Position Sensor (마이크로/나노 핸들링을 위한 마이크로 로보틱 플랫폼: 비전 기반 3자유도 절대위치센서 개발)

  • Lee, Jae-Ha;Breguet, Jean Marc;Clavel, Reymond;Yang, Seung-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.1
    • /
    • pp.125-133
    • /
    • 2010
  • A versatile micro-robotic platform for micro/nano scale assembly has been demanded in a variety of application areas such as micro-biology and nanotechnology. In the near future, a flexible and compact platform could be effectively used in a scanning electron microscope chamber. We are developing a platform that consists of miniature mobile robots and a compact positioning stage with multi degree-of-freedom. This paper presents the design and the implementation of a low-cost and compact multi degree of freedom position sensor that is capable of measuring absolute translational and rotational displacement. The proposed sensor is implemented by using a CMOS type image sensor and a target with specific hole patterns. Experimental design based on statistics was applied to finding optimal design of the target. Efficient algorithms for image processing and absolute position decoding are discussed. Simple calibration to eliminate the influence of inaccuracy of the fabricated target on the measuring performance also presented. The developed sensor was characterized by using a laser interferometer. It can be concluded that the sensor system has submicron resolution and accuracy of ${\pm}4{\mu}m$ over full travel range. The proposed vision-based sensor is cost-effective and used as a compact feedback device for implementation of a micro robotic platform.

The multi-axial testing system for earthquake engineering researches

  • Lin, Te-Hung;Chen, Pei-Ching;Lin, Ker-Chun
    • Earthquakes and Structures
    • /
    • v.13 no.2
    • /
    • pp.165-176
    • /
    • 2017
  • Multi-Axial Testing System (MATS) is a 6-DOF loading system located at National Center for Research on Earthquake Engineering (NCREE) in Taiwan for advanced seismic testing of structural components or sub-assemblages. MATS was designed and constructed for a large variety of structural testing, especially for the specimens that require to be subjected to vertical and longitudinal loading simultaneously, such as reinforced concrete columns and lead rubber bearings. Functionally, MATS consists of a high strength self-reacting frame, a rigid platen, and a large number of servo-hydraulic actuators. The high strength self-reacting frame is composed of two post-tensioned A-shape reinforced concrete frames interconnected by a steel-and-concrete composite cross beam and a reinforced concrete reacting base. The specimen can be anchored between the top cross beam and the bottom rigid platen within a 5-meter high and 3.25-meter wide clear space. In addition to the longitudinal horizontal actuators that can be installed for various configurations, a total number of 13 servo-hydraulic actuators are connected to the rigid platen. Degree-of-freedom control of the rigid platen can be achieved by driving these actuators commanded by a digital controller. The specification and information of MATS in detail are described in this paper, providing the users with a technical point of view on the design, application, and limitation of MATS. Finally, future potential application employing advanced experimental technology is also presented in this paper.

A Study on the Influence of a supporting structure on the Seismic Response of a Roof Structure (하부구조가 지붕구조의 지진응답에 미치는 영향에 관한 연구)

  • Jung, Chan-Woo;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.2 s.24
    • /
    • pp.63-74
    • /
    • 2007
  • Large spatial structures consist of roof structure and its supporting structure. Authors simply call the supporting structure "lower parts" and roof structure "upper parts". To study the influence of an lower part on the seismic response of the upper part of a structure as a first step, authors substitute the upper part and the lower part of the structure to a single degree of freedom system individually, and set up a new 2 DOF structural model connected by them. It is clarified that the mass ratio and the period ratio of an upper part to a lower part are important parameters to find the amplification or reduction of the seismic response of an upper part.

  • PDF

Kinematic and dynamic analysis of a spherical three degree of freedom joint rehabilitation exercise equipment (3자유도 구형관절 재활운동기기의 기구학 및 동역학 해석)

  • Kim, Seon-Pil
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.14 no.4
    • /
    • pp.16-29
    • /
    • 2009
  • This paper investigates the kinematic and dynamic analysis of a spherical three degree of freedom parallel joint module, which is used in the exercise equipment for balance and leg-strength improvement of aged people. The joint module has three dyads which consist of two links and three revolute joints, and their all joints intersect at the global point located at the module's center. The paper shows the explicit mathematical procedure for deriving the closed form solutions in the inverse and forward position analysis of this parallel joint module. In velocity and acceleration analysis, we derived relations for joint velocities and accelerations of dyads and rotational velocity and acceleration of the top plate. For applying this module to rehabilitation exercise, we determined the dynamic model of the Korean males in their 50s and examined the model's results by dynamic model simulation.

Real-time Parallel Processing Simulator for Modeling Portable Missile System and Performance Analysis (휴대용 유도탄 체계의 모델링과 성능분석을 위한 실시간 병렬처리 시뮬레이터)

  • Kim Byeong-Moon;Jung Soon-Key
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.4 s.42
    • /
    • pp.35-45
    • /
    • 2006
  • RIn this paper. we describe real-time parallel processing simulator developed for the use of performance analysis of rolling missiles. The real-time parallel processing simulator developed here consists of seeker emulator generating infrared image signal on aircraft, real-time computer, host computer, system unit, and actual equipments such as auto-pilot processor and seeker processor. Software is developed according to the design requirements of mathematic model, 6 degree-of-freedom module, aerodynamic module which are resided in real-time computer. and graphic user interface program resided in host computer. The real-time computer consists of six TI C-40 processors connected in parallel. The seeker emulator is designed by using analog circuits coupled with mechanical equipments. The system unit provides interface function to match impedance between the components and processes very small electrical signals. Also real launch unit of missiles is interfaced to simulator through system unit. In order to use the real-time parallel processing simulator developed here as a performance analysis equipment for rolling missiles, we perform verification test through experimental results in the field.

  • PDF

Speed Control for BLDC Motors Using a Two-Degree-of-Freedom Optimal Control Technique (2자유도 적분형 최적제어법을 이용한 BLDC 모터의 속도제어)

  • 권혁진;정석권
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.3
    • /
    • pp.257-265
    • /
    • 2000
  • Brushless DC(BLDC) motors are widely used as AC servo motors in factory automation fields because of their quick instantaneous mobility, good energy saving efficiency and easiness of design for control system comparing with induction motors. Recently, a Two-Degree-of-Freedom(2DOF) PI control law has been adopted to some application parts to accomplish an advanced speed control of BLDC motors. The method can treat the two conflicting performances, minimum tracking errors versus reference inputs without large overshoot and rejection of some disturbances including modeling errors, independently. However, the method can not design the optimal system which is able to minimize tracking errors and energy consumption simultaneously. In this paper, a 2DOF integral type optimal servo control method is investigated to promote the speed control performances of BLDC motors considering energy consumption. In order to applicate the method to the speed servo system of the BLDC motor, the motor is modeled in the state space using the vector control and decoupling technique. To verify the validity of the suggested method, some simulations and experiments are performed.

  • PDF

Simulation of Dynamic EADs Jamming Performance against Tracking Radar in Presence of Airborne Platform

  • Rim, Jae-Won;Jung, Ki-Hwan;Koh, Il-Suek;Baek, Chung;Lee, Seungsoo;Choi, Seung-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.475-483
    • /
    • 2015
  • We propose a numerical scheme to simulate the time-domain echo signals at tracking radar for a realistic scenario where an EAD (expendable active decoy) and an airborne target are both in dynamic states. On various scenarios where the target takes different maneuvers, the trajectories of the EAD ejected from the target are accurately calculated by solving 6-DOF (Degree-of-Freedom) equations of the motion for the EAD. At each sampling time of the echo signal, the locations of the EAD and the target are assumed to be fixed. Thus, the echo power from the EAD can be simply calculated by using the Friis transmission formula. The returned power from the target can be computed based on the pre-calculated scattering matrix of the target. In this paper, an IPO (iterative physical optics) method is used to construct the scattering matrix database of the target. The sinc function-interpolation formulation (sampling theorem) is applied to compute the scattering at any incidence angle from the database. A simulator is developed based on the proposed scheme to estimate the echo signals, which can consider the movement of the airborne target and EAD, also the scattering of the target and the RF specifications of the EAD. For applications, we consider the detection probability of the target in the presence of the EAD based on Monte Carlo simulation.

6DOF Simulation and Determination of Hydrodynamic Derivatives of Underwater Tow-Fish Using CFD (CFD를 이용한 수중 예인체의 유체력 미계수 결정과 6자유도 운동해석)

  • Go, Gwangsoo;Lee, Euntaek;Ahn, Hyung Taek;Kim, Seongil;Chun, Seung Yong;Kim, Jung Suk;Lee, Byeong Hee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.4
    • /
    • pp.315-328
    • /
    • 2016
  • Techniques for determinating hydrodynamic derivatives of underwater tow-fish using CFD(Computational Fluid Dynamics) are described in this paper. Main components of hydrodynamic derivatives are added mass, linear damping and non-linear damping coefficients. In this study, linear and non-linear damping coefficients for translational velocities are settled by CFD analysis. In order to analyze the underwater tow-fish, UlsanFOAM based on open-source CFD code, namely OpenFOAM, is employed. By simulating pitch and yaw angle variation of underwater tow-fish, 6DOF(Degree-of-Freedom) forces and moments are estimated at each attitudes. In order to determinate the hydrodynamic derivatives, curves(forces and moments vs attitude) for CFD results are fitted by least square methods. To demonstrate the applicability of the current approach, two different problems(impulsive side towing and straight towing) are simulated and all results are validated.

Is it Beneficial to Utilize an Articulating Instrument in Single-Port Laparoscopic Gastrectomy?

  • Kim, Amy;Lee, Chang Min;Park, Sungsoo
    • Journal of Gastric Cancer
    • /
    • v.21 no.1
    • /
    • pp.38-48
    • /
    • 2021
  • Purpose: As the number of gastric cancer survivors is increasing and their quality of life after surgery is being emphasized, single-port surgery is emerging as an alternative to conventional gastrectomy. A novel multi-degree-of-freedom (DOF) articulating device, the ArtiSential® device (LivsMed, Seongnam, Korea), was designed to allow more intuitive and meticulous control for surgeons facing ergonomic difficulties with conventional tools. In this study, we evaluated the feasibility of this new device during single-port laparoscopic distal gastrectomy (SP-LDG) for early gastric cancer (EGC) patients. Materials and Methods: Consecutive patients diagnosed with EGC who underwent SP-LDG with ArtiSential® (LivsMed) graspers between April 2018 and August 2020 were enrolled in the study. The clinical outcomes were compared with those of a control group, in which prebent graspers (Olympus Medical Systems Corp) were used for the same procedures. Results: Seventeen patients were enrolled in the ArtiSential® group. There was no significant difference in operative time (205.4±6.0 vs. 218.1±9.9 minutes, P= 0.270) or the quality of surgery, in terms of the number of retrieved lymph nodes (49.5±3.5 vs. 45.9±4.0, P=0.473), length of hospital stay (15.4±2.0 vs. 12.4±1.3 days, P=0.588), and postoperative complications (40.0% vs. 41.2%, P=0.595), between the ArtiSential® group and the control group. Conclusions: The new multi-DOF articulating grasper is feasible and can be used as an alternative for prebent graspers during SP-LDG.

A Study on Implementation of Service Robot Platform for Mess-Cleanup (정리정돈용 서비스 로봇 플랫폼의 구현 연구)

  • Kim, Seung-Woo;Kim, Hi-Jun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.5
    • /
    • pp.487-495
    • /
    • 2012
  • In this paper, a Smart Home Service Robot, McBot II, which performs mess-cleanup function etc. in house, is designed much more optimally than other service robots. It is newly developed in much more practical system than McBot I which we had developed two years ago. One characteristic attribute of mobile platforms equipped with a set of dependent wheels is their omni- directionality and the ability to realize complex translational and rotational trajectories for agile navigation in door. An accurate coordination of steering angle and spinning rate of each wheel is necessary for a consistent motion. This paper develops trajectory controller of 3-wheels omni-directional mobile robot using fuzzy azimuth estimator. A specialized anthropomorphic robot manipulator which can be attached to the housemaid robot McBot II, is developed in this paper. This built-in type manipulator consists of both arms with 4 DOF (Degree of Freedom) each and both hands with 3 DOF each. The robotic arm is optimally designed to satisfy both the minimum mechanical size and the maximum workspace. Minimum mass and length are required for the built-in cooperated-arms system. But that makes the workspace so small. This paper proposes optimal design method to overcome the problem by using neck joint to move the arms horizontally forward/backward and waist joint to move them vertically up/down. The robotic hand, which has two fingers and a thumb, is also optimally designed in task-based concept. Finally, the good performance of the developed McBot II is confirmed through live tests of the mess-cleanup task.