• Title/Summary/Keyword: DOE(Design Of Experiments)

Search Result 221, Processing Time 0.032 seconds

Design of Spot Weld Based on the Durability Influence Index and the DOE Analysis (점용접부 내구 영향도 지수와 실험 계획법을 이용한 자동차 부품 점용접 설계)

  • Choi, Noo-Ri;Ju, Byeong-Hyeon;Park, Jung-Min;Eom, Jae-Sung;Byun, Hyung-Bai;Kim, Dong-Seok;Lee, Byung-Chai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.9 s.252
    • /
    • pp.1142-1147
    • /
    • 2006
  • A practical method for reducing the number of spot welds in automotive structures considering fatigue crack initiation life is suggested. At first, an influence index for the durability and the fatigue life of a spot weld itself is defined and then taken as the main effect of the DOE analysis. Spot welds that can be removed without serious reduction of durability through numerical experiments are selected by the results of DOE. The proposed method was applied to the shock tower and LCA(lower control arm) structure of a vehicle, which are important components in durability-related point of view.

Optimal Design for Torsional Stiffness of the Tubular Space Frame of a Low-Cost Single Seat Race Car (저가 입문용 1인승 레이스카 Tubular Space Frame의 비틀림 강성 최적설계)

  • Jang, Woongeun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.10
    • /
    • pp.5955-5962
    • /
    • 2014
  • Generally, the frame design of a vehicle is a critical technology that plays an important role in the racing and high performance sports car market. The high performance of race car frame means that it requires high torsional stiffness because it directly affects the cornering behavior of the race car. The optimal design for the frame of a low-cost single seat race car was carried out using the DOE (Design Of Experiments) with Taguchi's orthogonal array and FEM (Finite Element Method) analysis to secure sufficient torsional stiffness in this paper. According to the results by DOE and FEM analysis, the optimal design case produced improved 10.7% and 14.5% improvement in each stiffness-to-weight ratio and frame weight than in the early design step. Therefore, this paper shows that the optimal design with Taguchi's orthogonal array is very useful and effective for designing a tubular space frame of a low-cost single seat race car in the early design step.

Study on Optimization of Operating Conditions for High Temperature PEM Fuel Cells Using Design of Experiments (실험계획법을 이용한 고온 고분자 전해질 막 연료전지의 운전조건 최적화 연구)

  • Kim, Jintae;Kim, Minjin;Sohn, Youngjun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.1
    • /
    • pp.50-60
    • /
    • 2013
  • High temperature proton exchange membrane fuel cells (PEMFCs) using phosphoric acid (PA) doped polybenzimidazole (PBI) membranes have been concentrated as one of solutions to the limits with traditional low temperature PEMFCs. However, the amount of reported experimental data is not enough to catch the operational characteristics correlated with cell performance and durability. In this study, design of experiments (DOE) based operational optimization method for high temperature PEMFCs has been proposed. Response surface method (RSM) is very useful to effectively analyze target system's characteristics and to optimize operating conditions for a short time. Thus RSM using central composite design (CCD) as one of methodologies for design of experiments (DOE) was adopted. For this work, the statistic models which predict the performance and degradation rate with respect to the operating conditions have been developed. The developed performance and degradation models exhibit a good agreement with experimental data. Compared to the existing arbitrary operation, the expected cell lifetime and average cell performance during whole operation could be improved by optimizing operating conditions. Furthermore, the proposed optimization method could find different new optimal solutions for operating conditions if the target lifetime of the fuel cell system is changed. It is expected that the proposed method is very useful to find optimal operating conditions and enhance performance and durability for many other types of fuel cell systems.

Optimization of Lactic Acid Production in SSF by Lactobacillus amylovorus NRRL B-4542 Using Taguchi Methodology

  • Nagarijun Pyde Acharya;Rao Ravella Sreenivas;Rajesham Swargam;Rao Linga Venkateswar
    • Journal of Microbiology
    • /
    • v.43 no.1
    • /
    • pp.38-43
    • /
    • 2005
  • Lactic acid production parameter optimization using Lactobacillus amylovorus NRRL B-4542 was performed using the design of experiments (DOE) available in the form of an orthogonal array and a software for automatic design and analysis of the experiments, both based on Taguchi protocol. Optimal levels of physical parameters and key media components namely temperature, pH, inoculum size, moisture, yeast extract, $MgSO_4{\cdot}7H_20$, Tween 80, and corn steep liquor (CSL) were determined. Among the physical parameters, temperature contributed higher influence, and among media components, yeast extract, $MgSO_4{\cdot}7H_20$, and Tween 80 played important roles in the conversion of starch to lactic acid. The expected yield of lactic acid under these optimal conditions was 95.80% and the actual yield at optimum conditions was 93.50%.

A Numerical Study on Shape Design Optimization for an Impeller of a Centrifugal Compressor (원심압축기 임펠러의 형상 설계 최적화에 관한 수치적 연구)

  • Seo, JeongMin;Park, Jun Young;Choi, Bum Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.3
    • /
    • pp.5-12
    • /
    • 2014
  • This paper presents a design optimization for meridional profile and blade angle ${\theta}$ of a centrifugal compressor with DOE (design of experiments) and RSM (response surface method). Control points of the $3^{rd}$ order Bezier curve are used for design parameters and specific overall efficiency is used as object function. The response surface function shows good agreement with the 3D computational results. Three different optimized designs are proposed and compared with reference design at design point and off-design point. Contours of relative Mach number, static entropy, and total pressure are analyzed for improvement of performance by optimization. Off-design performance analysis is conducted by total pressure and efficiency.

Experimental Investigations of Systematic Errors in Wind Tunnel Testing Using Design of Experiments (실험설계법 기반 풍동시험 시스템 오차 검출 실험연구)

  • Oh, Se-Yoon;Park, Seung-O;Ahn, Seung-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.5
    • /
    • pp.335-341
    • /
    • 2013
  • The variation of systematic bias errors in the wind tunnel testing has been studied. A Design of Experiments(DOE) approach to an experimental study of fuselage drag and stability characteristics of a helicopter configuration was applied. When forces and moments measured in one time block differ significantly from measurements made in another time block under assumption that sample observations can be expected to yield same results within permissible measuring errors. The practical implication of this paper is that the systematic error can not be assumed not to exist. The those error reduction could be achieved through the process of randomization, blocking, and replication of the data points.

EFFECTIVE REINFORCEMENT OF S-SHAPED FRONT FRAME WITH A CLOSED-HAT SECTION MEMBER FOR FRONTAL IMPACT USING HOMOGENIZATION METHOD

  • CHO Y.-B.;SUH M.-W.;SIN H.-C.
    • International Journal of Automotive Technology
    • /
    • v.6 no.6
    • /
    • pp.643-655
    • /
    • 2005
  • The frontal crash optimization of S-shaped closed-hat section member using the homogenization method, design of experiment (DOE) and response surface method (RSM) was studied. The optimization to effectively absorb more crash energy was studied to introduce the reinforcement design. The main focus of design was to decide the optimum size and thickness of reinforcement. In this study, the location of reinforcement was decided by homogenization method. Also, the effective size and thickness of reinforcements was studied by design of experiments and response surface method. The effects of various impact velocity for reinforcement design were researched. The high impact velocity reinforcement design showed to absorb the more crash energy than low velocities design. The effect of size and thickness of reinforcement was studied and the sensitivity of size and thickness was different according to base thickness of model. The optimum size and thickness of the reinforcement has shown a direct proportion to the thickness of base model. Also, the thicker the base model was, the effect of optimization using reinforcement was the bigger. The trend curve for effective size and thickness of reinforcement using response surface method was obtained. The predicted size and thickness of reinforcement by RSM were compared with results of DOE. The results of a specific dynamic mean crushing loads for the predicted design by RSM were shown the small difference with the predicted results by RSM and DOE. These trend curves can be used as a basic guideline to find the optimum reinforcement design for S-shaped member.

Design of 3-Axis Moving Magnet Type Electromagnetic Actuator using Integrated Design Method (통합설계방법을 적용한 가동자석형 3축 액추에이터의 설계)

  • Kim, Sang-Young;Park, No-Cheol;Park, Young-Pil;Park, Kyoung-Su
    • Transactions of the Society of Information Storage Systems
    • /
    • v.7 no.2
    • /
    • pp.80-84
    • /
    • 2011
  • In this paper, we propose the integrated design method that enables multi-physics modeling and coupled-field analysis by connecting an electromagnetic field and a structural field. We design the 3-axis moving magnet type actuator that has the high structural stiffness and the effective electromagnetic circuit generating large electromagnetic force. Through design of experiments (DOE) and optimization, the designed actuator is optimized and satisfies high dynamic characteristics over the desired specifications.

Development of Optimization Algorithm for Unconstrained Problems Using the Sequential Design of Experiments and Artificial Neural Network (순차적 실험계획법과 인공신경망을 이용한 제한조건이 없는 문제의 최적화 알고리즘 개발)

  • Lee, Jung-Hwan;Suh, Myung-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.3
    • /
    • pp.258-266
    • /
    • 2008
  • The conventional approximate optimization method, which uses the statistical design of experiments(DOE) and response surface method(RSM), can derive an approximated optimum results through the iterative process by a trial and error. The quality of results depends seriously on the factors and levels assigned by a designer. The purpose of this study is to propose a new technique, which is called a sequential design of experiments(SDOE), to reduce a trial and error procedure and to find an appropriate condition for using artificial neural network(ANN) systematically. An appropriate condition is determined from the iterative process based on the analysis of means. With this new technique and ANN, it is possible to find an optimum design accurately and efficiently. The suggested algorithm has been applied to various mathematical examples and a structural problem.