• 제목/요약/키워드: DOC(diesel oxidation catalyst)

검색결과 60건 처리시간 0.227초

바나듐 기반의 Urea-SCR과 DOC가 결합된 Heavy-Duty 디젤 배출가스 후처리 시스템의 SCR De-NOx 성능 향상에 관한 수치해석 연구 (Numerical Modeling of Vanadia-based Commercial Urea-SCR plus DOC Systems for Heavy-duty Diesel Exhaust Aftertreatment Systems)

  • 윤병규;김종민;김만영;조규백;김홍석;정용일
    • 한국자동차공학회논문집
    • /
    • 제18권2호
    • /
    • pp.24-30
    • /
    • 2010
  • In this study, numerical experiments were carried out to estimate the SCR De-NOx performance in DOC plus SCR systems. The SCR De-NOx phenomena are described by Langmuir-Hinshelwood reaction scheme. After validating the present approach by comparing the present results with the experimental results, such various parameters as space velocity, $H_2O$ concentration, $NO_2$/NOx ratio and relative volume of DOC are explored to increase the SCR De-NOx performance. The results indicate that SCR De-NOx performance largely depends on space velocity and $NO_2$/NOx ratio, especially below $200^{\circ}C$. SCR De-NOx performance is seriously affected by relative volume of DOC with SCR due to increasing in $NO_2$/NOx ratio at below $250^{\circ}C$.

백금산화촉매를 통한 이산화질소(NO2)의 저감 특성에 관한 실험적 연구 (Experimental Investigation on the Reduction Characteristics of Nitric Dioxide(NO2) over Platinum-based Oxidation Catalyst)

  • 김영득;조자윤;이정길;김우승
    • 한국자동차공학회논문집
    • /
    • 제20권4호
    • /
    • pp.142-149
    • /
    • 2012
  • The reduction characteristics of $NO_2$ to NO are experimentally studied over a platinum-based catalyst, especially at lower temperatures below about $200^{\circ}C$. In the present work, two types of steady-state experiments, engine bench and synthetic gas bench tests, are carried out in sequence. Steady-state engine bench tests with the DOC mounted on a light duty 4-cylinder 2.0 liter turbocharged diesel engine are performed and prove that CO plays a major role in $NO_2$ abatement at temperatures below the light-off temperature of CO oxidation, about $200^{\circ}C$. Synthetic gas bench tests are then performed using synthetic gas mixtures with CO, $C_3H_6$, NO, $NO_2$, $O_2$, $H_2O$ and $N_2$ in the $140{\sim}450^{\circ}C$ T-range and show that both CO and $C_3H_6$ are capable of reducing $NO_2$. It is noted that the reaction rate of $NO_2$ with $C_3H_6$ is much higher than that with CO. At temperatures below about $200^{\circ}C$, the reduction of $NO_2$ to NO is promoted with increasing CO concentration and $NO_2$/$NO_X$ ratio and with decreasing $O_2$ concentration, as well as with the presence of $H_2O$.

후처리장치 성능 평가를 위한 Dump Combustor의 활용 (The Application of Dump Combustor for Evaluation of After-Treatment System)

  • 남연우;이원남;오광철;이춘범
    • 한국연소학회지
    • /
    • 제12권3호
    • /
    • pp.16-23
    • /
    • 2007
  • Employing an after-treatment system has almost become a mandatory requirement for Diesel vehicles, which results from a reinforced exhaust regulations as the number of vehicles powered by a Diesel engine increases. The Diesel Particulate Filter (DPF) system is considered as one of the most efficient method to reduce particulate matter (PM); however, the improvement of a regeneration performance at any engine operation point presents a considerable challenge by itself. Temperature, gas composition and flow rate of exhaust gas are important parameters in DPF evaluation processes, especially during a regeneration process. Engine dynamometer and segment tester are generally used in DPF evaluation so far. These test methods, however, could not completely evaluate the effect of various parameters on real DPF, such as oxygen concentration, amount of soot and exhaust gas temperatures. The evaluation of DPF systems using a dump combustor has been verified experimentally and this dump combustor system is likely to be appropriate for the DOC (Diesel Oxidation Catalyst) and SCR (Selective Catalytic Reduction) assessments test, too.

  • PDF

스크린 필터 구조 Partial Metal DPF의 PM 저감 특성 (PM Reduction Characteristics of Partial Metal DPF with Screen Mesh Filter Structure)

  • 김충희;김현철;이기수;최정황;전문수;신석신;서현규
    • 한국자동차공학회논문집
    • /
    • 제21권3호
    • /
    • pp.82-87
    • /
    • 2013
  • In this work, the 1L grade integrated metal DOC/DPF filter that can install in engine manifold position was developed to investigate the effect of platinum-coating amount of filter on the improvement of filter activation temperature and reduction of particulate matter (PM). This filter was installed in 2.9L CI engine which meets the EURO-4 emission regulation. Tests for PM reduction efficiency of filter were conducted under ND-13 mode with full-load test condition. It was revealed that the time to reach the activation temperature of metal filter ($280^{\circ}C$) was shorter as the amount of platinum-coating increased. This short activation time can be helpful for the reduction of CO and HC emissions during cold start condition. At the same time, PM reduced as the coating amount increased. The reduction percentage of $DOC_{40}$, $DOC_{20}$, and $DOC_0$ were 96.7% (2.34 mg/kW'h), 95.1% (3.47 mg/kW'h), and 94.5% (3.69 mg/kW'h) compared to previous result (71.4 mg/kW'h), respectively.

연속재생 DPF의 재생 성능에 미치는 차량 운행패턴의 영향 (Influence of Driving Pattern on Regeneration Performance of Continuously Regenerating Diesel Particulate Filter)

  • 황진우;이창식
    • 대한기계학회논문집B
    • /
    • 제33권5호
    • /
    • pp.358-364
    • /
    • 2009
  • This paper is to investigate the influence of driving patterns of slow and high speed vehicles on the performance of continuously regenerating diesel particulate filter(DPF) system matched with operating conditions in field application. The DPF performance test for field application was carried out for two identical DPFs installed to slow and high speed vehicles. A slow speed vehicle was selected among local buses which have driving patterns to repeat running and stop frequently, while a high speed vehicle was prepared to have long route of high speed over 60km/h like inter-city buses. In this test, the regeneration performance on the DPF of slow speed vehicle deteriorated because of high soot load index(SLI) in spite of same balance point temperature(BPT) distribution for high speed vehicle. The DPF of slow speed vehicle melted in the end because the rapid increase of back pressure caused high temperature over $1200^{\circ}C$ in the ceramic wall of DPF. The PM components like ash collected to the filter in the DPF were analyzed in order to investigate the cause of the defect and provide an operation performance of DPF system. In the result of the analysis, high levels of lubrication oil ash(Ca, Mg, P, Zn) were detected.

The effect of dynamic operating conditions on nano-particle emissions from a light-duty diesel engine applicable to prime and auxiliary machines on marine vessels

  • Lee, Hyungmin;Jeong, Yeonhwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제4권4호
    • /
    • pp.403-411
    • /
    • 2012
  • This study presents the nano-sized particle emission characteristics from a small turbocharged common rail diesel engine applicable to prime and auxiliary machines on marine vessels. The experiments were conducted under dynamic engine operating conditions, such as steady-state, cold start, and transient conditions. The particle number and size distributions were analyzed with a high resolution PM analyzer. The diesel oxidation catalyst (DOC) had an insignificant effect on the reduction in particle number, but particle number emissions were drastically reduced by 3 to 4 orders of magnitude downstream of the diesel particulate filter (DPF) at various steady conditions. Under high speed and load conditions, the particle filtering efficiency was decreased by the partial combustion of trapped particles inside the DPF because of the high exhaust temperature caused by the increased particle number concentration. Retarded fuel injection timing and higher EGR rates led to increased particle number emissions. As the temperature inside the DPF increased from $25^{\circ}C$ to $300^{\circ}C$, the peak particle number level was reduced by 70% compared to cold start conditions. High levels of nucleation mode particle generation were found in the deceleration phases during the transient tests.

승용 디젤 엔진의 후처리 시스템 적용에 따른 나노입자 배출 맵 구축 및 저감특성에 관한 연구 (Study of Particle Emission Contour Construction & Characteristics and Reduction Efficiency of Exhaust-Treatment System of Diesel Engine)

  • 고아현;황인구;명차리;박심수;최회명
    • 대한기계학회논문집B
    • /
    • 제34권8호
    • /
    • pp.755-760
    • /
    • 2010
  • 본 연구는 승용 디젤엔진의 입자상 물질 배출특성에 관한 것으로써, 엔진에서 배출된 입자상 물질이 배기관 및 후처리장치인 디젤산화촉매와 매연여과장치를 통과할 때의 특성 변화를 파악하기 위하여 후처리장치 각각 전 후단 및 배기관에서 직접 측정하였다. 또한 다양한 엔진회전속도 및 부하조건에서 측정함으로써 입자상 물질 배출 맵을 구축하였으며, 디젤산화촉매 및 매연여과장치의 입자상 물질 저감효과에 대해 평가하였다. 뿐만 아니라 배기재순환율과 연료분사시기를 변경시켜 입자상 물질의 배출특성 변화를 파악하였다. 모든 시험에서 입자상 물질을 5~1000nm 크기까지 측정할 수 있는 DMS500을 이용하였다.

실험계획법을 이용한 고효율 소형 열병합 시스템 성능 해석 (Performance Analysis of High Efficiency Co-generation System Using the Experimental Design Method)

  • 류미라;이준식;박정호;이성범;이대희
    • 한국자동차공학회논문집
    • /
    • 제20권3호
    • /
    • pp.20-25
    • /
    • 2012
  • As a kind of distributed energy system, the co-generation system based Diesel engine using after-treatment device was devised for its environmental friendly and economic qualities. It is utilized in that the electric power is produced by the generator connected to the Diesel engine, and waste heat is recovered from both the exhaust gases and the engine itself by the finned tube and shell & tube heat exchangers. An after-treatment device composed ceramic heater and DOC(Diesel Oxidation Catalyst) is installed at the engine outlet in order to completely reignite the unburned fuel from the Diesel engine. In this study, mutual relation of each experimental condition was derived through minimum number of experiment using Taguchi Design and ANOVA recently used in the various fields. It is found that the total efficiency (thermal efficiency plus electric power generation efficiency) of this system reaches maximum 94.4% which is approximately higher than that of the typical diesel engine exhaust heat recovery system.

실차 실험을 통한 승용 디젤엔진의 Urea-SCR을 위한 암모니아 흡장률 피드백 제어 분사전략 검증 (Experimental Verification of Adsorption Rate Feedback Control Strategy for Automotive Urea-SCR DeNOX System)

  • 신병욱;박주영;이성욱;강연식
    • 대한기계학회논문집B
    • /
    • 제41권6호
    • /
    • pp.397-407
    • /
    • 2017
  • 본 논문에서는 연비손실 없이 높은 $NO_X$ 저감성능을 보이는 승용 디젤 엔진의 SCR 시스템을 위한 요소수의 분사전략을 제시하였다. 배출되는 $NO_X$량 대비 요소수가 화학량론적 1:1인 피드포워드 분사 전략과 함께 모델기반의 촉매 내 $NH_3$ 흡장률 추정 기법을 통하여 피드백 분사 제어전략을 함께 사용함으로써 과도상태에서 $NO_X$ 저감성능과 $NH_3$ 슬립 성능을 모두 만족시키고자 하였다. 제안된 분사전략을 적용하여 디젤산화촉매기와, 미립자필터가 장착된 2.2L 디젤 엔진을 갖춘 실제 차량에서의 실험을 통하여 제어기의 높은 $NO_X$ 저감률과 낮은 $NH_3$ 슬립 성능을 검증하였다.

배출가스 저감장치에 따른 Euro 5 경유 대형버스의 유해대기오염물질 배출특성 (Emission Characteristics of Hazardous Air Pollutants from Diesel Heavy Duty Buses for Euro 5 according to After-treatment Systems)

  • 홍희경;문선희;정택호;김선문;서석준;김정화;정성운;홍유덕
    • 한국분무공학회지
    • /
    • 제23권4호
    • /
    • pp.175-184
    • /
    • 2018
  • Emission characteristics of regulated (NOx, PM, CO, NMHC) and unregulated (VOCs, aldehydes, PAHs) air pollutants were investigated for diesel heavy duty buses equipped with different after-treatment systems (DPF+EGR and SCR) under urban driving cycle. The combustion temperature and the working temperature of SCR catalysts were important to make impact on NOx emissions, whereas PM emissions were low. The alkane groups dominated NMVOCs emissions, making 42.6~59.4% of sum of the NMVOCs emissions. Especially, alkane emissions of DPF+EGR-equipped vehicle included DOC had 14.9~15.5% higher than those of SCR-equipped vehicle due to low efficiency of oxidation catalyst. In the case of individual NMVOCs, n-nonane and propylene emissions highly occupied for DPF+EGR and SCR, respectively. Formaldehyde emissions among aldehydes were the highest and PAHs emissions were hardly detected except naphthalene and phenanthrene. The NMHC speciation has been shown to be the highest of the formaldehyde ranged 20.8~21.5%. The results of this study will be contributed to establish Korean HAPs emission inventory for automobile source.