• 제목/요약/키워드: DOC(diesel oxidation catalyst)

검색결과 60건 처리시간 0.023초

경유차 적용 디젤산화촉매장치의 성능 변화 분석 (An Investigation of Performance Change of Diesel Oxidation Catalyst for Diesel Vehicle)

  • 황진우;이창식
    • 한국분무공학회지
    • /
    • 제14권1호
    • /
    • pp.15-19
    • /
    • 2009
  • This paper is to investigated the analysis of performance characteristics of diesel oxidation catalyst (DOC) for diesel vehicle with 2.5L piston displacement. The performance evaluation test of DOC applied to test diesel vehicle was carried out for four kinds of DOCs manufactured from different company. The testing DOCs were randomly selected from the retrofit vehicle and then standard test vehicle that was representative for the application group was equipped with DOC for the test. In this verification test, the reduction rate of particulate matter (P.M.) and the deviation of the performance of the DOC were examined through CVS-75 mode of the standard vehicle and SOF reduction rate of specific DOC was investigated. It was found that some DOCs failed to pass the criteria of the P.M. reduction rate because of the reason seen catalyst aging even if they were same devices. In the result of SOF analysis, the specific DOC showed more PM reduction than SOF of PM. reduction exceptionally.

  • PDF

산화촉매에 의한 소형디젤엔진의 배출가스 저감특성 (Characteristics of Exhaust Emissions Reduction by Oxidation Catalyst for Light-duty Diesel Engine)

  • 김선문;임철수;엄명도;정일래
    • 한국대기환경학회지
    • /
    • 제18권5호
    • /
    • pp.411-417
    • /
    • 2002
  • The purpose of this study is to evaluate the emission reduction characteristics depending on the formation of the catalyst which influences the development of the diesel oxidation catalyst (DOC) suitable for small-sized diesel engines. We also attempted to suggest the feasibility of it as an after-treatment device. The reduction efficiency of DOC for CO and HC was proportional to the contents of precious metals, and the particulate matter (PM) has been reduced as much as 53∼59%. The reduction rate of soluble organic fraction (SOF) by DOC attachment revealed 100%. The composition of sulfate in PM increased from 3%, 7∼11% by installation of DOC. It is described that increase of sulfate contributed to the production of PM. This result also showed that the SOF and sulfate have trade-off relationship.

CI기관에서 디젤산화촉매장치에 의한 배출가스 저감에 관한 연구 (A Study on Emission Reduction by Diesel Oxidation Catalyst in Diesel Engine)

  • 김경배;한영출;강호인
    • 한국자동차공학회논문집
    • /
    • 제4권4호
    • /
    • pp.164-170
    • /
    • 1996
  • Among after treatment devices which reduce exhaust gas of diesel engine, diesel oxidation catalyst(DOC) with high reduction efficiency for gaseous matter and particulate matter is now being studied actively. In this study, an experiment was conducted to analyze the effects on factors of oxidaton characteristics and conversion efficiency of DOC. We tested to estimate change of engine performance whether a 11,000cc diesel engine equipps with DOC or not. We conducted test to estimate the reduction efficiency of exhaust gas in P-5 mode, in D-13 mode of heavy duty diesel regulation mode and in somoke opacity mode for two samples and also we conducted test to analyze the effects about both exhaust gas velocities 1,100rpm and 2,200rpm

  • PDF

디젤자동차용 산화촉매의 성능 평가 (Performance Evaluation of Diesel Oxidation Catalysts for Diesel Vehicles)

  • 최병철;박희주;정명근
    • 한국자동차공학회논문집
    • /
    • 제11권6호
    • /
    • pp.59-64
    • /
    • 2003
  • Recently, as people pay attention to the environmental pollution, the emissions of diesel engine have been a serious problem. We carried out the performance evaluation test of Diesel Oxidation Catalysts (DOC) for HSDI diesel engine equipped vehicles. The DOC, basically coated with Pt catalyst, was manufactured with various washcoat materials. It was found that CO conversion efficiency depends on temperature, but THC conversion efficiency is dominated by temperature and space velocity. The THC and CO conversion efficiencies of aged catalysts were increased with additions of $ZrO_2$ and zeolite B in the washcoat. We found that DOC performance changes with coating techniques, even through it has same washcoat materials. The DOC coated by high temperature washcoat coating technology showed good conversion efficiency than low temperature washcoat coated DOC.

디젤기관에서 산화촉매장치에 의한 배기가스 저감에 관한 이론적 연구 (A Theoretical Study on Exhaust Gas Reduction by Oxidation Catalyst in Diesel Engine)

  • 한영출;김종춘;김태섭
    • 한국자동차공학회논문집
    • /
    • 제5권4호
    • /
    • pp.179-189
    • /
    • 1997
  • Among aftertreatment devices which reduce exhaust gas of diesel engine, diesel oxidation catalyst(DOC) with high reduction efficiency for gaseous matter and particulate matter is now studied actively. In this study, a transient one-dimensional model developed to simulate the thermal and conversion characteristics of adiabatic monolithic converters operating under warm up conditions is presented. This model takes into account the gas solid heat and mass transfer, axial heat conduction, chemical reactions and the related heat release. The model has been used to analyze the transient response of an axisymmetric catalytic converter during a warm-up as a function of catalyst design parameters and operation conditions in order to observe their effects on the lightoff behaviour. The experimental test was carried out 2400 cc light diesel engine with DOC.

  • PDF

디젤기관의 산화촉매에서 Pt 로딩량에 따른 배출가스 저감에 관한 실험적 연구 (A Experimental Study on Exhaust Gas Reduction by Pt Loading in Oxidation Catalyst of Diesel Engine)

  • 오용석
    • 한국생산제조학회지
    • /
    • 제8권4호
    • /
    • pp.13-18
    • /
    • 1999
  • Recently among after-treatment devices which have high possibility of utility diesel oxidation catalyst(DOC) is concerned over the world. DOC oxidizes pollutants by means of activate-reaction during by-passing in the catalyst in doing so conversion efficiency of PM, CO and HC is high and this device does not have an effect on engine performance because back pressure is not nearly increased, But as a small amount of sulfur content in fuel is oxidized it makes sulfate which is absorbed on the surface of catalyst. So in this study the experiment is carried out by means of using ordinary fuel(0.1wt%) and low sulfur fuel(0.05wt%) with DOC and the emission gas of diesel engine is measured.

  • PDF

산화촉매에 의한 대형디젤엔진의 배출가스 정화 특성 - Reactor 실험을 중심으로 - (Characteristics of Exhaust Emission Reduction of Heavy Duty Diesel Engine by Oxidation Catalyst - Reactor Test -)

  • 조강래;김용우;김희강
    • 한국대기환경학회지
    • /
    • 제14권4호
    • /
    • pp.313-320
    • /
    • 1998
  • The most desirable diesel oxidation catalyst (DOC) should have the properties of oxidibing CO and HC effectively at low exhaust gas temperature while minimizing the formation of sulfate at high exhaust gas temperature. Precious metals such as platinum and palladium have been known to be sufficiently active for oxidizing CO and HC and also to have high activity for the oxidation of sulfur dioxide (SO2) to sulfor trioxide (SO3). There is a need to develop a highly selective catalyst which can promote the oxidation of CO and HC efficiently, but, on the other hand, suppress the oxidation of SO2. One approach to solve this problem is to load a base metal such as vanadium in Pt-based catalyst to suppress sulfate formation. In this study, a Pt-V catalyst was prepared by impregnating platinum and vanadium onto a Ti-Si wash coated catalyst in a laboratory reactor by changing the formulations and reaction temperatures.

  • PDF

대형디젤기관의 디젤산화촉매장치에서 저유황 경유에 의한 배출가스 저감에 관한 실험적 연구 (An Experimental Study on Emission Reduction by Low Sulfur Diesel Fuel in Diesel Oxidation Catalyst of Heavy Duty Diesel Engine)

  • 요용석;강호인;한영출
    • 한국자동차공학회논문집
    • /
    • 제6권3호
    • /
    • pp.138-142
    • /
    • 1998
  • Among aftertreatment devices which reduce exhaust gas of diesel engine, diesel oxidation catalyst(DOC) with high reduction efficiency for gaseous matter and particulate matter is now being studied actively. In this study, an experiment was conducted to analyze the effects of low sulfur diesel fuel in heavy duty diesel engine equipped with DOC. We tested to estimate change of engine performance for the low and high sulfur diesel fuels in a 11,000cc diesel engine equipped with DOC. We conducted test to estimate the reduction efficiency of exhaust gas in D-13 mode of heavy duty diesel regulation mode and in smoke opacity mode for two samples of high sulfur content (0.2%) and low sulfur content(0.05%)

  • PDF

DPF 재생을 위한 버너-산화촉매 복합 적용 (Combined Application of Burner and Oxidation Catalyst for Diesel Particulate Filter Regeneration)

  • 심성훈;정상현
    • 한국연소학회지
    • /
    • 제15권3호
    • /
    • pp.25-31
    • /
    • 2010
  • Combined technique of burner and DOC has been used for regeneration of Diesel Particulate Filter. Experiments has been performed to increase the temperature of engine exhaust gas to burn the collected soot in DPF at all conditions of operation of 3 liter diesel engine. Ignition temperature of soot can be successfully obtained by heats of burner flame and residual fuel oxidation at diesel oxidation catalyst even in the condition of oxygen deficiency. It is found that the load of air compressor and heat loss can be reduced to the level of practical application. It is also found that CO and THC emissions are not increase by additional combustion of regeneration burner.

DOC의 K-7 Mode에 의한 배기가스 저감에 관한 연구 (A Study on Exhaust Gas Reduction By K-7 Mode of DOC)

  • 백두성
    • 한국생산제조학회지
    • /
    • 제9권3호
    • /
    • pp.136-142
    • /
    • 2000
  • With the significant growth of the number of vehicles environmental problems is raised. NOx SOx, and PM emissions in diesel powered vehicles are larger than that in gasoline because the development of pollutants reduction techniques has not been yet achieved. So it is need to develop after-tratment or to convert into alternative fuel to satisfy emission regula-tion. Among the after-treatment systems to reduce the diesel emissions studies with diesel oxidation catalyst(DOC) are done greatly. In this study using DOC reduction efficiency with the change of temperature and catalyst loading was calculated through measurements of CO, HC, PM. and SOX.

  • PDF