• Title/Summary/Keyword: DNase

Search Result 122, Processing Time 0.02 seconds

Apoptosis Induction of Human Breast Carcinoma Cells by Ethyl Alcohol Extract of Hizikia fusiforme (Apoptosis 유도에 의한 톳 ethyl alcohol 추출물의 인체 유방암세포 증식 억제)

  • Jung, Sun-Hwa;Hwang, Won-Deuk;Nam, Taek-Jeong;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.19 no.11
    • /
    • pp.1581-1590
    • /
    • 2009
  • Hizikia fusiforme is a kind of brown edible seaweed that mainly grows in the temperate seaside areas of the northwest pacific, including Korea, Japan and China, and has been widely used as a health food for hundreds of years. Recently, H. fusiforme has been known to exert pharmacological activities including antioxidant, antimutagenic and anticoagulant activities. However, the molecular mechanisms of H. fusiforme in malignant cells have not been clearly elucidated yet. In this study, the effects of ethyl alcohol extract of H. fusiforme (EAHF) on the anti-proliferative effects of MDA-MB-231 and MCF-7 human breast cancer cells were investigated. EAHF treatment resulted in a concentration-dependent growth inhibition by including apoptosis in MDA-MB-231 cells and G1 phase arrest in MCF-7 cells, which could be proved by MTT assay, DAPI staining, agarose gel electrophoresis and flow cytometry analysis. In MDA-MB-231 cells, the increase in apoptosis induced by EAHF treatment correlated with up-regulation of pro-apoptotic Bax expression. EAHF treatment induced the proteolytic activation of caspase-3 and caspase-9, and a concomitant inhibition of poly (ADP-ribose) polymerase, $\beta$-catenin, phospholipase-${\gamma}1$ protein and DNA fragmentation factor 45/inhibitor of caspase-activated DNase. Taken together, these findings provide important new insights into the possible molecular mechanisms of the anti-cancer activity of H. fusiforme.

A Simple Isolating Method of Preantral Follicles from Mouse Ovaries (생쥐 난소에서 Preantral Follice의 단순 분리법)

  • Kim, Ju-Hwan;Park, Kee-Sang;Song, Hai-Bum;Chun, Sang-Sik
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.27 no.3
    • /
    • pp.235-243
    • /
    • 2000
  • Objective: Our present studies were conducted to examine more effective isolating method of preantral follicles from mouse ovaries. Methods: ICR mice (3-6 weeks old) were sacrificed through cervical dislocation and their ovaries were removed and put into watch glasses containing Hams F-10 supplemented with 10% fetal bovine serum (FBS). Preantral follicles were isolated by three different methods; 1) enzymatical method and 2) mincing method, and 3) scraping method. Enzymatical method was carried out as following. Ovaries were bisected with a pair of fine 30G needles. Bisected ovaries were incubated at $37^{\circ}C$ and 5% $CO_2$ incubator in 2-well dish containing Hams F-10 supplemented with collagenase 600 lU/ml and DNAse 20 lU/ml. After 20 min., follicles were isolated by repeated pipetting. Isolated preantral follicles were collected, and the remnant of tissues was placed in incubator and previous procedure was repeated. Mincing method was carried out with a pair of fine 30G needles attached to 1 ml syringes and minced ovary. Scraping method was carried out with a pair of fine 30G needles and scratched to surface of ovary. The differences between isolating methods were analyzed using Student's t-test and Chi-square. Results were considered statistically significant when ${\rho}$ value was less than 0.05. Results: In handling time, mincing or scraping method ($28{\pm}3.42$ min or $16{\pm}1.58$ min) were significantly (p<0.00001) shorter than enzymatical method ($72{\pm}1.69$ min), and scraping method was significantly (p<0.01) shorter than mincing method. Total number of isolated follicles was significantly (p<0.0001) higher in enzymatical method ($49.8{\pm}3.91$) than in mincing or scraping method ($25.3{\pm}2.33$ or $20.5{\pm}1.75$). Isolated follicles in ${\leq}$90${\mu}m$ were significantly (p<0.005) higher in enzymatical method ($15{\pm}1.71$) than in mincing or scraping method ($7.8{\pm}0.98$ or $8.1{\pm}1.31$). In 91~130 ${\mu}m$, isolated follicles were significantly (p<0.0005) higher in enzymatical method ($33{\pm}3.27$) than in mincing or scraping method ($16.3{\pm}1.82$ or $10.7{\pm}1.38$). In ${\geq}$ 131 ${\mu}m$, isolated follicles were not significantly differences between all groups. In equal sizes, the rate of isolated follicles in ${\leq}$ 90 ${\mu}m$ was highest in scraping method (39.6% vs. enzymatical method: 30.1%, p<0.05; mincing method: 30.9%, p=0.11719, NS). Rate of follicles in $91{\sim}130$ ${\mu}m$ was significantly (p<0.05) lower in scraping method (52.7%) than in enzymatical or mincing method (66.3% or 64.5%). Rate of follicles in ${\geq}$131 ${\mu}m$ was highest in scraping method (8.3% vs. enzymatical or scraping method: 3.6%, p<0.05 or 4.6%, p=0.19053, NS). Conclusions: This study suggests that scraping method is simple and useful for isolation of preantral follicles, because this method reduced handling time and recovered enough follicles. The recovered rate of isolated follicles in diameter of 91 ~ 130 ${\mu}m$ was highest in all methods.

  • PDF