• Title/Summary/Keyword: DNS Failure

Search Result 6, Processing Time 0.021 seconds

Efficient Management of DNS Failure (DNS장애 발생 시 효율적인 대처방안)

  • Lim, Yang-Won;Lim, Han-Kyu
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.12
    • /
    • pp.273-282
    • /
    • 2007
  • The Domain Name System (DNS) is the core system for managing Internet address resources, providing the most fundamental naming service. Currently, the DNS is classified into a tree structure. In this structure, it is difficult to normally access to the lower DNS, when there is an error in the upper DNS. Such a risk still remains even when a supplementary DNS is operated. However, due to the merit of the DNS enabling fast searches, it is impracticable to abandon the current tree structure. To efficiently correspond to DNS errors, this study suggests a method where the merit of the current tree structure is kept, while a temporary operation of the local DNS is available when errors occur by adding a horizontal and independent DNS structure.

Fail-over Mechanisms based on Anycast for Stable IPv6 Recursive DNS Services (안정적인 IPv6 리커시브 DNS 서비스를 위한 애니캐스트 기반의 실패 복구 방안 연구)

  • Suh, Yu-Hwa;Kim, Kyung-Min;Shin, Yong-Tae;Song, Kwang-Ho;Kim, Weon;Park, Chan-Ki
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.2B
    • /
    • pp.108-117
    • /
    • 2007
  • Recursive DNS is configured as primary or secondary DNS on user PC and performs domain name resolution corresponding user's DNS query. At present, the amount of DNS traffic is occupied high rate in the total internet traffic and the internet traffic would be increased by failure of IPv6 DNS queries and responses as IPv6 transition environment. Also, existing Recursive DNS service mechanisms is unstable on malicious user's attack same as DoS/DDoS Attack and isn't provide to user trust DNS service fail-over. In this paper, we propose IPv6 Recursive DNS service mechanisms for based on anycast for improving stability. It is that fail-over Recursive DNS is configured IPv6 Anycast address for primary Recursive DNS's foil-over. this mechanisms increases reliability and resiliency to DoS/DDoS attacks and reduces query latency and helps minimize DNS traffic as inducing IPv6 address.

Numerical Simulation of Mechanical Behavior of Composite Structures by Supercomputing Technology

  • Kim, Seung-Jo;Ji, Kuk-Hyun;Paik, Seung-Hoon
    • Advanced Composite Materials
    • /
    • v.17 no.4
    • /
    • pp.373-407
    • /
    • 2008
  • This paper will examine the possibilities of the virtual tests of composite structures by simulating mechanical behaviors by using supercomputing technologies, which have now become easily available and powerful but relatively inexpensive. We will describe mainly the applications of large-scale finite element analysis using the direct numerical simulation (DNS), which describes composite material properties considering individual constituent properties. DNS approach is based on the full microscopic concepts, which can provide detailed information about the local interaction between the constituents and micro-failure mechanisms by separate modeling of each constituent. Various composite materials such as metal matrix composites (MMCs), active fiber composites (AFCs), boron/epoxy cross-ply laminates and 3-D orthogonal woven composites are selected as verification examples of DNS. The effective elastic moduli and impact structural characteristics of the composites are determined using the DNS models. These DNS models can also give the global and local information about deformations and influences of high local in-plane and interlaminar stresses induced by transverse impact loading at a microscopic level inside the materials. Furthermore, the multi-scale models based on DNS concepts considering microscopic and macroscopic structures simultaneously are also developed and a numerical low-velocity impact simulation is performed using these multi-scale DNS models. Through these various applications of DNS models, it can be shown that the DNS approach can provide insights of various structural behaviors of composite structures.

DEVELOPMENT OF AN LES METHODOLOGY FOR COMPLEX GEOMETRIES

  • Merzari, Elia;Ninokata, Hisashi
    • Nuclear Engineering and Technology
    • /
    • v.41 no.7
    • /
    • pp.893-906
    • /
    • 2009
  • The present work presents the development of a Large Eddy Simulation (LES) methodology viable for complex geometries and suitable for the simulation of rod-bundles. The use of LES and Direct Numerical Simulation (DNS) allows for a deeper analysis of the flow field and the use of stochastical tools in order to obtain additional insight into rod-bundle hydrodynamics. Moreover, traditional steady-state CFD simulations fail to accurately predict distributions of velocity and temperature in rod-bundles when the pitch (P) to diameter (D) ratio P/D is smaller than 1.1 for triangular lattices of cylindrical pins. This deficiency is considered to be due to the failure to predict large-scale coherent structures in the region of the gap. The main features of the code include multi-block capability and the use of the fractional step algorithm. As a Sub-Grid-Scale (SGS) model, a Dynamic Smagorinsky model has been used. The code has been tested on plane channel flow and the flow in annular ducts. The results are in excellent agreement with experiments and previous calculations.

A Design Solution for a Railway Switch Monitoring System (분기기 진단 시스템 설계에 관한 연구)

  • Choo, Eun-Sang;Kim, Min-Seong;Yoo, Heung-Yeol;Mo, Choong-Seon;Son, Eui-Sik;Park, Seongguen;Lee, Jong-Woo
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.5
    • /
    • pp.439-446
    • /
    • 2015
  • The turnout system, which determines the direction of the train, is not only a key system but also a vulnerable system. Failure of this system may lead to a delay of the train or even casualties. In this light, it is necessary to precisely the conditions of the turnout system. Currently, ROADMASTER of Germany is used as a diagnostic system in Korea. However, a new diagnostic system should be developed for optimized operation of the turnout system with maintenance that is suitable for the Korean railway environment. In this paper, a Fault Tree Analysis for the representative faults of the turnout system is conducted and physical quantities, which can be the cause of the fault, are classified according to the component and function. Also, the measuring factors for the monitoring are derived and a decision making theory is suggested. On the basis of the results, we propose a new turnout diagnostic system that can provide more driverse and precise information than the conventional system.

Designing a system to defend against RDDoS attacks based on traffic measurement criteria after sending warning alerts to administrators (관리자에게 경고 알림을 보낸 후 트래픽 측정을 기준으로 RDDoS 공격을 방어하는 시스템 설계)

  • Cha Yeansoo;Kim Wantae
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.20 no.1
    • /
    • pp.109-118
    • /
    • 2024
  • Recently, a social issue has arisen involving RDDoS attacks following the sending of threatening emails to security administrators of companies and institutions. According to a report published by the Korea Internet & Security Agency and the Ministry of Science and ICT, survey results indicate that DDoS attacks are increasing. However, the top response in the survey highlighted the difficulty in countering DDoS attacks due to issues related to security personnel and costs. In responding to DDoS attacks, administrators typically detect anomalies through traffic monitoring, utilizing security equipment and programs to identify and block attacks. They also respond by employing DDoS mitigation solutions offered by external security firms. However, a challenge arises from the initial failure in early response to DDoS attacks, leading to frequent use of detection and mitigation measures. This issue, compounded by increased costs, poses a problem in effectively countering DDoS attacks. In this paper, we propose a system that creates detection rules, periodically collects traffic using mail detection and IDS, notifies administrators when rules match, and Based on predefined threshold, we use IPS to block traffic or DDoS mitigation. In the absence of DDoS mitigation, the system sends urgent notifications to administrators and suggests that you apply for and use of a cyber shelter or DDoS mitigation. Based on this, the implementation showed that network traffic was reduced from 400 Mbps to 100 Mbps, enabling DDoS response. Additionally, due to the time and expense involved in modifying detection and blocking rules, it is anticipated that future research could address cost-saving through reduced usage of DDoS mitigation by utilizing artificial intelligence for rule creation and modification, or by generating rules in new ways.