• 제목/요약/키워드: DNN Model

검색결과 246건 처리시간 0.02초

딥러닝 알고리즘을 이용한 인쇄된 별색 잉크의 색상 예측 연구 (A Study on A Deep Learning Algorithm to Predict Printed Spot Colors)

  • 전수현;박재상;태현철
    • 산업경영시스템학회지
    • /
    • 제45권2호
    • /
    • pp.48-55
    • /
    • 2022
  • The color image of the brand comes first and is an important visual element that leads consumers to the consumption of the product. To express more effectively what the brand wants to convey through design, the printing market is striving to print accurate colors that match the intention. In 'offset printing' mainly used in printing, colors are often printed in CMYK (Cyan, Magenta, Yellow, Key) colors. However, it is possible to print more accurate colors by making ink of the desired color instead of dotting CMYK colors. The resulting ink is called 'spot color' ink. Spot color ink is manufactured by repeating the process of mixing the existing inks. In this repetition of trial and error, the manufacturing cost of ink increases, resulting in economic loss, and environmental pollution is caused by wasted inks. In this study, a deep learning algorithm to predict printed spot colors was designed to solve this problem. The algorithm uses a single DNN (Deep Neural Network) model to predict printed spot colors based on the information of the paper and the proportions of inks to mix. More than 8,000 spot color ink data were used for learning, and all color was quantified by dividing the visible light wavelength range into 31 sections and the reflectance for each section. The proposed algorithm predicted more than 80% of spot color inks as very similar colors. The average value of the calculated difference between the actual color and the predicted color through 'Delta E' provided by CIE is 5.29. It is known that when Delta E is less than 10, it is difficult to distinguish the difference in printed color with the naked eye. The algorithm of this study has a more accurate prediction ability than previous studies, and it can be added flexibly even when new inks are added. This can be usefully used in real industrial sites, and it will reduce the attempts of the operator by checking the color of ink in a virtual environment. This will reduce the manufacturing cost of spot color inks and lead to improved working conditions for workers. In addition, it is expected to contribute to solving the environmental pollution problem by reducing unnecessarily wasted ink.

음소 인식을 위한 스파이크그램 기반의 음성 특성 추출 기술 (Speech Feature Extraction based on Spikegram for Phoneme Recognition)

  • 한석현;김재원;안순호;신성현;박호종
    • 방송공학회논문지
    • /
    • 제24권5호
    • /
    • pp.735-742
    • /
    • 2019
  • 본 논문에서는 스파이크그램을 기반으로 음소 인식을 위한 특성을 추출하는 방법을 제안한다. 음소 인식에 널리 사용되는 푸리에 변환 기반의 특성은 청각 기관의 동작에 부합하는 과정으로 구해지지 않으며 프레임 단위로 추출되어 높은 시간 해상도를 가지지 못한다. 따라서 음소 인식의 성능 향상을 위해 높은 시간 해상도를 가지면서 인간의 청각기관을 모델링 하는 새로운 음성 특성 추출 기술이 요구된다. 본 논문에서는 청각 기관의 특성 추출 및 전달 과정을 모델링 하는 기법인 스파이크그램을 사용하여 음성 신호를 분석하고, 이로부터 음소 인식을 위한 특성을 추출하는 방법을 제안한다. 심층 신경망 기반의 음소 인식기를 사용하여 제안한 특성의 음소 인식 성능을 측정하였고, 짧은 음소에 대해 제안 특성이 기존 푸리에 변환 기반의 특성보다 우수한 성능을 가지는 것을 확인하였다. 이 결과로부터 청각 모델을 기반으로 추출된 새로운 음성 특성을 사용하여 음소 인식이 가능함을 확인할 수 있다.

Sentinel-1 SAR 영상과 인공지능 기법을 이용한 연안해역의 고해상도 해상풍 산출 (Estimation of High-resolution Sea Wind in Coastal Areas Using Sentinel-1 SAR Images with Artificial Intelligence Technique)

  • 조성억;안지혜;이양원
    • 대한원격탐사학회지
    • /
    • 제37권5_1호
    • /
    • pp.1187-1198
    • /
    • 2021
  • 해상풍 데이터는 최근 들어서 신재생 에너지 개발의 일환으로 해상 풍력발전 단지가 각광받으면서 더욱 중요성을 더하고 있다. 본 연구에서는 2015~2020년 부울경(부산, 울산, 경남) 연안해역을 촬영한 Sentinel-1 영상 368장과 저해상도 수치모델의 UV 컴포넌트를 이용한 DNN (Deep Neural Network) 모델을 개발하여 해상풍 데이터를 공간해상도 10 m 수준으로 정밀하게 생산하는 방법을 제시하였다. 이를 통해 기존의 CMOD (C-band Model) 함수에 비해 40% 정도 오차가 감소하였으며, U 컴포넌트와 V 컴포넌트는 각각 상관계수 0.901, 0.826의 비교적 높은 정확도를 나타냈다. 본 연구에서 부울경 해역(해안선으로부터 3 km 버퍼 영역)에 대해 산출한 10 m 해상도의 바람장 지도를 작성해 보면, 내륙에서 외해로 갈수록 풍속이 강해지는 일반적인 경향을 따르면서도 공간적으로 상세화된 바람 패턴을 잘 나타낼 수 있었다. 이러한 고해상도 해상풍 지도는 해상 풍력발전을 위한 상세조사뿐 아니라, SAR를 활용한 전천후 연안 방재 및 연안레저 정보 제공을 지원할 수 있을 것으로 기대한다.

딥러닝을 이용한 스마트 교육시설 공사비 분석 및 예측 - 기획·설계단계를 중심으로 - (A Study on the Analysis and Estimation of the Construction Cost by Using Deep learning in the SMART Educational Facilities - Focused on Planning and Design Stage -)

  • 정승현;권오빈;손재호
    • 교육시설 논문지
    • /
    • 제25권6호
    • /
    • pp.35-44
    • /
    • 2018
  • The purpose of this study is to predict more accurate construction costs and to support efficient decision making in the planning and design stages of smart education facilities. The higher the error in the projected cost, the more risk a project manager takes. If the manager can predict a more accurate construction cost in the early stages of a project, he/she can secure a decision period and support a more rational decision. During the planning and design stages, there is a limited amount of variables that can be selected for the estimating model. Moreover, since the number of completed smart schools is limited, there is little data. In this study, various artificial intelligence models were used to accurately predict the construction cost in the planning and design phase with limited variables and lack of performance data. A theoretical study on an artificial neural network and deep learning was carried out. As the artificial neural network has frequent problems of overfitting, it is found that there is a problem in practical application. In order to overcome the problem, this study suggests that the improved models of Deep Neural Network and Deep Belief Network are more effective in making accurate predictions. Deep Neural Network (DNN) and Deep Belief Network (DBN) models were constructed for the prediction of construction cost. Average Error Rate and Root Mean Square Error (RMSE) were calculated to compare the error and accuracy of those models. This study proposes a cost prediction model that can be used practically in the planning and design stages.

주파수 영역 심층 신경망 기반 음성 향상을 위한 실수 네트워크와 복소 네트워크 성능 비교 평가 (Performance comparison evaluation of real and complex networks for deep neural network-based speech enhancement in the frequency domain)

  • 황서림;박성욱;박영철
    • 한국음향학회지
    • /
    • 제41권1호
    • /
    • pp.30-37
    • /
    • 2022
  • 본 논문은 주파수 영역에서 심층 신경망 기반 음성 향상 모델 학습을 위하여 학습 대상과 네트워크 구조에 따라 두 가지 관점에서 성능을 비교 평가한다. 이때, 학습 대상으로는 스펙트럼 매핑과 Time-Frequency(T-F) 마스킹 기법을 사용하였고 네트워크 구조는 실수 네트워크와 복소 네트워크를 사용하였다. 음성 향상 모델의 성능은 데이터 셋 규모에 따라 Perceptual Evaluation of Speech Quality(PESQ)와 Short-Time Objective Intelligibility(STOI) 두 가지 객관적 평가지표를 통해 평가하였다. 실험 결과, 네트워크의 종류와 데이터 셋 종류에 따라 적정한 훈련 데이터의 크기가 다르다는 것을 확인하였다. 또한, 데이터의 크기와 학습 대상에 따라 복소 네트워크보다 실수 네트워크가 비교적 높은 성능을 보이기 때문에 총 파라미터의 수를 고려한다면 경우에 따라 실수 네트워크를 사용하는 것이 보다 현실적인 해결책일 수 있다는 것을 확인하였다.

DNN기반 상수도시스템 누수시나리오에 따른 누수탐지성능 평가 (Evaluation of leakage detection performance according to leakage scenarios of water distribution systems based on deep neural networks)

  • 김률;최영환
    • 한국수자원학회논문집
    • /
    • 제56권5호
    • /
    • pp.347-356
    • /
    • 2023
  • 상수도시스템에서는 적수 및 누수와 같은 다양한 수리 및 수질적 비정상상황이 발생한다. 이를 방지하거나 빠르게 복구하기 위하여 다양한 계측기에서 얻어지는 데이터를 통해 사고를 예상하고 탐지한다. 하지만 대표적인 수리학적 비정상상황인 누수의 경우 직접적인 탐사를 수행하지 않는다면 발견되기 어렵다. 그 중 미신고 파열누수의 경우 육안식별이 어렵기 때문에 가장 많은 누수를 차지하게 되며 이는 곧 큰 경제적 손실로 이어진다. 직접적인 탐사의 경우 전문인력 확보 등 현장의 여건 등 여러 한계점이 존재한다. 이를 해결하기 위해 본 연구에서는 검보정이 완료된 상수도관망 수리모형(EPANET)의 수리해석결과 데이터를 학습데이터로 사용하고 Deep neural network 알고리즘을 활용하여 누수규모 및 누수위치에 대한 누수탐사를 수행하였다. 누수탐사 수행을 위해 모의 누수 사고데이터를 생성하였으며 누수규모, 위치 등 다양한 시나리오를 고려하였다. 또한, 최적의 누수 탐지 성능을 위해 관망의 크기, 계측기의 종류, 개수, 위치에 따른 탐지성능을 분석하였다.

Deep learning-based anomaly detection in acceleration data of long-span cable-stayed bridges

  • Seungjun Lee;Jaebeom Lee;Minsun Kim;Sangmok Lee;Young-Joo Lee
    • Smart Structures and Systems
    • /
    • 제33권2호
    • /
    • pp.93-103
    • /
    • 2024
  • Despite the rapid development of sensors, structural health monitoring (SHM) still faces challenges in monitoring due to the degradation of devices and harsh environmental loads. These challenges can lead to measurement errors, missing data, or outliers, which can affect the accuracy and reliability of SHM systems. To address this problem, this study proposes a classification method that detects anomaly patterns in sensor data. The proposed classification method involves several steps. First, data scaling is conducted to adjust the scale of the raw data, which may have different magnitudes and ranges. This step ensures that the data is on the same scale, facilitating the comparison of data across different sensors. Next, informative features in the time and frequency domains are extracted and used as input for a deep neural network model. The model can effectively detect the most probable anomaly pattern, allowing for the timely identification of potential issues. To demonstrate the effectiveness of the proposed method, it was applied to actual data obtained from a long-span cable-stayed bridge in China. The results of the study have successfully verified the proposed method's applicability to practical SHM systems for civil infrastructures. The method has the potential to significantly enhance the safety and reliability of civil infrastructures by detecting potential issues and anomalies at an early stage.

기후 및 계절정보를 이용한 딥러닝 기반의 장기간 태양광 발전량 예측 기법 (Deep Learning Based Prediction Method of Long-term Photovoltaic Power Generation Using Meteorological and Seasonal Information)

  • 이동훈;김관호
    • 한국전자거래학회지
    • /
    • 제24권1호
    • /
    • pp.1-16
    • /
    • 2019
  • 최근 온실가스의 증가로 인한 기후변화 대응의 필요성과 전력수요의 증가로 인해 태양광발전량(PV) 예측의 중요성은 급격히 증가하고 있다. 특히, 태양광 발전량을 예측하는 것은 합리적인 전력 가격결정과 시스템 안정성 및 전력 생산 균형과 같은 문제를 효과적으로 해결하기 위해 전력생산 계획을 합리적으로 계획하는데 도움이 될 수 있다. 그러나 일사량, 운량, 온도 등과 같은 기후정보 및 계절 변화로 인한 태양광 발전량이 무작위적으로 변화하기 때문에 정확한 태양광 발전량을 예측하는 것은 도전적인 일이다. 따라서 본 논문에서는 딥러닝 모델을 통해 기후 및 계절정보를 이용하여 학습함으로써 장기간 태양광 발전량 예측 성능을 향상시킬 수 있는 기법을 제안한다. 본 연구에서는 대표적인 시계열 방법 중 하나인 계절형 ARIMA 모델과 하나의 은닉층으로 구성되어 있는 ANN 기반의 모델, 하나 이상의 은닉층으로 구성되어 있는 DNN 기반의 모델과의 비교를 통해 본 연구에서 제시한 모델의 성능을 평가한다. 실데이터를 통한 실험 결과, 딥러닝 기반의 태양광 발전량 예측 기법이 가장 우수한 성능을 보였으며, 이는 본 연구에서 목표로 한 태양광 발전량 예측 성능 향상에 긍정적인 영향을 나타내었음을 보여준다.

납기 위반 및 셋업 최소화를 위한 강화학습 기반의 설비 일정계획 모델 (Machine Scheduling Models Based on Reinforcement Learning for Minimizing Due Date Violation and Setup Change)

  • 유우식;서주혁;김다희;김관호
    • 한국전자거래학회지
    • /
    • 제24권3호
    • /
    • pp.19-33
    • /
    • 2019
  • 최근 제조업체들은 제품의 생산방식이 고도화 되고, 복잡해지면서 생산 장비를 효율적으로 사용하는데 어려움을 겪고 있다. 제조공정의 효율성을 방해하는 대표적인 요인들로는 작업물 종류 변경(job change)으로 인한 작업 준비 비용(Setup Cost) 등이 있다. 특히 반도체/LCD 공정과 같이 고가의 생산 장비를 사용하는 공정의 경우 장비의 효율적인 사용이 매우 중요한데, 상호 충돌하는 의사결정인 납기 준수를 최대화 하는 것과 작업물 종류 변경으로 인한 작업 준비 비용을 최소화 하는 것 사이에서 균형을 유지하는 것은 매우 어려운 일이다. 본 연구에서는 납기와 작업 준비 비용이 있는 병렬기계에서 강화학습을 활용하여 납기 및 셋업 비용의 최소화 목표를 달성하는 일정계획 모델을 개발하였다. 제안하는 모델은 DQN(Deep Q-Network) 일정계획 모델로 강화학습기반의 모델이다. 제안모델의 효율성을 측정하기 위해 DQN 모델과 기존에 개발하였던 심층 신경망 기반의 일정계획 생성기법과 휴리스틱 원칙의 결과를 비교하였다. 비교 결과 DQN 일정계획 생성기법이 심층신경망 방식과 휴리스틱 원칙에 비하여 납기 및 셋업 비용이 적은 것을 확인할 수 있었다.

Curve Number 및 Convolution Neural Network를 이용한 유출모형의 적용성 평가 (Applicability Evaluation for Discharge Model Using Curve Number and Convolution Neural Network)

  • 송철민;이광현
    • Ecology and Resilient Infrastructure
    • /
    • 제7권2호
    • /
    • pp.114-125
    • /
    • 2020
  • 본 연구는 유출모형 연구를 위해 주로 사용되었던 DNN에서 벗어나, 다양한 신경망을 이용하여 유출모형을 개발하고 모형의 적합성을 나타내고자 하였다. 이를 위해 분류문제에만 사용되었던 CNN을 활용하였는데, 본 모형의 입력자료로 일반적으로 CNN에서 사용하는 사진을 이용할 수 없으며, 연구의 특성상 유역조건 및 강우 등의 영향이 반영된 수치적(numerical) 이미지(image)를 사용해야 하는 난해점이 있다. 이를 해결하고자 NRCS의 CN을 사용하여 이미지를 생성했으며, CNN 모형의 입력자료로 충분히 활용 가능함을 나타냈다. 이에 더하여, 유출 추정을 위해서만 사용되어왔던 CN의 새로운 용도를 제시할 수 있었다. 모형의 학습 및 검정 결과, 전반적으로 안정적으로 모형의 학습 및 일반화가 이루어졌으며, 관측값과 산정값간의 관계를 나타내는 R2는 0.79로 비교적 높은 값이 나타났다. 또한, 모형의 평가결과는 Pearson 상관계수, NSE, 및 RMSE 등이 각각 0.84, 0.65 및 24.54 ㎥/s으로 나타나, 전반적으로 양호한 모형의 산정성능을 보인것으로 나타났다.