• Title/Summary/Keyword: DNN 모델

Search Result 183, Processing Time 0.027 seconds

Evaluating the prediction models of leaf wetness duration for citrus orchards in Jeju, South Korea (제주 감귤 과수원에서의 이슬지속시간 예측 모델 평가)

  • Park, Jun Sang;Seo, Yun Am;Kim, Kyu Rang;Ha, Jong-Chul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.3
    • /
    • pp.262-276
    • /
    • 2018
  • Models to predict Leaf Wetness Duration (LWD) were evaluated using the observed meteorological and dew data at the 11 citrus orchards in Jeju, South Korea from 2016 to 2017. The sensitivity and the prediction accuracy were evaluated with four models (i.e., Number of Hours of Relative Humidity (NHRH), Classification And Regression Tree/Stepwise Linear Discriminant (CART/SLD), Penman-Monteith (PM), Deep-learning Neural Network (DNN)). The sensitivity of models was evaluated with rainfall and seasonal changes. When the data in rainy days were excluded from the whole data set, the LWD models had smaller average error (Root Mean Square Error (RMSE) about 1.5hours). The seasonal error of the DNN model had the similar magnitude (RMSE about 3 hours) among all seasons excluding winter. The other models had the greatest error in summer (RMSE about 9.6 hours) and the lowest error in winter (RMSE about 3.3 hours). These models were also evaluated by the statistical error analysis method and the regression analysis method of mean squared deviation. The DNN model had the best performance by statistical error whereas the CART/SLD model had the worst prediction accuracy. The Mean Square Deviation (MSD) is a method of analyzing the linearity of a model with three components: squared bias (SB), nonunity slope (NU), and lack of correlation (LC). Better model performance was determined by lower SB and LC and higher NU. The results of MSD analysis indicated that the DNN model would provide the best performance and followed by the PM, the NHRH and the CART/SLD in order. This result suggested that the machine learning model would be useful to improve the accuracy of agricultural information using meteorological data.

Deep Learning Model for Electric Power Demand Prediction Using Special Day Separation and Prediction Elements Extention (특수일 분리와 예측요소 확장을 이용한 전력수요 예측 딥 러닝 모델)

  • Park, Jun-Ho;Shin, Dong-Ha;Kim, Chang-Bok
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.4
    • /
    • pp.365-370
    • /
    • 2017
  • This study analyze correlation between weekdays data and special days data of different power demand patterns, and builds a separate data set, and suggests ways to reduce power demand prediction error by using deep learning network suitable for each data set. In addition, we propose a method to improve the prediction rate by adding the environmental elements and the separating element to the meteorological element, which is a basic power demand prediction elements. The entire data predicted power demand using LSTM which is suitable for learning time series data, and the special day data predicted power demand using DNN. The experiment result show that the prediction rate is improved by adding prediction elements other than meteorological elements. The average RMSE of the entire dataset was 0.2597 for LSTM and 0.5474 for DNN, indicating that the LSTM showed a good prediction rate. The average RMSE of the special day data set was 0.2201 for DNN, indicating that the DNN had better prediction than LSTM. The MAPE of the LSTM of the whole data set was 2.74% and the MAPE of the special day was 3.07 %.

Calculation of Shear Strength of Rock Slope Using Deep Neural Network (심층인공신경망을 이용한 암반사면의 전단강도 산정)

  • Lee, Ja-Kyung;Choi, Ju-Sung;Kim, Tae-Hyung;Geem, Zong Woo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.2
    • /
    • pp.21-30
    • /
    • 2022
  • Shear strength is the most important indicator in the evaluation of rock slope stability. It is generally estimated by comparing the results of existing literature data, back analysis, experiments and etc. There are additional variables related to the state of discontinuity to consider in the shear strength of the rock slope. It is difficult to determine whether these variables exist through drilling, and it is also difficult to find an exact relationship with shear strength. In this study, the data calculated through back analysis were used. The relationship between previously considered variables was applied to deep learning and the possibility for estimating shear strength of rock slope was explored. For comparison, an existing simple linear regression model and a deep learning algorithm, a deep neural network(DNN) model, were used. Although each analysis model derived similar prediction results, the explanatory power of DNN was improved with a small differences.

Improved Network Intrusion Detection Model through Hybrid Feature Selection and Data Balancing (Hybrid Feature Selection과 Data Balancing을 통한 효율적인 네트워크 침입 탐지 모델)

  • Min, Byeongjun;Ryu, Jihun;Shin, Dongkyoo;Shin, Dongil
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.2
    • /
    • pp.65-72
    • /
    • 2021
  • Recently, attacks on the network environment have been rapidly escalating and intelligent. Thus, the signature-based network intrusion detection system is becoming clear about its limitations. To solve these problems, research on machine learning-based intrusion detection systems is being conducted in many ways, but two problems are encountered to use machine learning for intrusion detection. The first is to find important features associated with learning for real-time detection, and the second is the imbalance of data used in learning. This problem is fatal because the performance of machine learning algorithms is data-dependent. In this paper, we propose the HSF-DNN, a network intrusion detection model based on a deep neural network to solve the problems presented above. The proposed HFS-DNN was learned through the NSL-KDD data set and performs performance comparisons with existing classification models. Experiments have confirmed that the proposed Hybrid Feature Selection algorithm does not degrade performance, and in an experiment between learning models that solved the imbalance problem, the model proposed in this paper showed the best performance.

Development of a Building Safety Grade Calculation DNN Model based on Exterior Inspection Status Evaluation Data (건축물 안전등급 산출을 위한 외관 조사 상태 평가 데이터 기반 DNN 모델 구축)

  • Lee, Jae-Min;Kim, Sangyong;Kim, Seungho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.6
    • /
    • pp.665-676
    • /
    • 2021
  • As the number of deteriorated buildings increases, the importance of safety diagnosis and maintenance of buildings has been rising. Existing visual investigations and building safety diagnosis objectivity and reliability are poor due to their reliance on the subjective judgment of the examiner. Therefore, this study presented the limitations of the previously conducted appearance investigation and proposed 3D Point Cloud data to increase the accuracy of existing detailed inspection data. In addition, this study conducted a calculation of an objective building safety grade using a Deep-Neural Network(DNN) structure. The DNN structure is generated using the existing detailed inspection data and precise safety diagnosis data, and the safety grade is calculated after applying the state evaluation data obtained using a 3D Point Cloud model. This proposed process was applied to 10 deteriorated buildings through the case study, and achieved a time reduction of about 50% compared to a conventional manual safety diagnosis based on the same building area. Subsequently, in this study, the accuracy of the safety grade calculation process was verified by comparing the safety grade result value with the existing value, and a DNN with a high accuracy of about 90% was constructed. This is expected to improve economic feasibility in the future by increasing the reliability of calculated safety ratings of old buildings, saving money and time compared to existing technologies.

Implementation of CNN-based classification model for flood risk determination (홍수 위험도 판별을 위한 CNN 기반의 분류 모델 구현)

  • Cho, Minwoo;Kim, Dongsoo;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.3
    • /
    • pp.341-346
    • /
    • 2022
  • Due to global warming and abnormal climate, the frequency and damage of floods are increasing, and the number of people exposed to flood-prone areas has increased by 25% compared to 2000. Floods cause huge financial and human losses, and in order to reduce the losses caused by floods, it is necessary to predict the flood in advance and decide to evacuate quickly. This paper proposes a flood risk determination model using a CNN-based classification model so that timely evacuation decisions can be made using rainfall and water level data, which are key data for flood prediction. By comparing the results of the CNN-based classification model proposed in this paper and the DNN-based classification model, it was confirmed that it showed better performance. Through this, it is considered that it can be used as an initial study to determine the risk of flooding, determine whether to evacuate, and make an evacuation decision at the optimal time.

A study on Gaussian mixture model deep neural network hybrid-based feature compensation for robust speech recognition in noisy environments (잡음 환경에 효과적인 음성 인식을 위한 Gaussian mixture model deep neural network 하이브리드 기반의 특징 보상)

  • Yoon, Ki-mu;Kim, Wooil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.6
    • /
    • pp.506-511
    • /
    • 2018
  • This paper proposes an GMM(Gaussian Mixture Model)-DNN(Deep Neural Network) hybrid-based feature compensation method for effective speech recognition in noisy environments. In the proposed algorithm, the posterior probability for the conventional GMM-based feature compensation method is calculated using DNN. The experimental results using the Aurora 2.0 framework and database demonstrate that the proposed GMM-DNN hybrid-based feature compensation method shows more effective in Known and Unknown noisy environments compared to the GMM-based method. In particular, the experiments of the Unknown environments show 9.13 % of relative improvement in the average of WER (Word Error Rate) and considerable improvements in lower SNR (Signal to Noise Ratio) conditions such as 0 and 5 dB SNR.

Analysis of Input Factors of DNN Forecasting Model Using Layer-wise Relevance Propagation of Neural Network (신경망의 계층 연관성 전파를 이용한 DNN 예보모델의 입력인자 분석)

  • Yu, SukHyun
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.8
    • /
    • pp.1122-1137
    • /
    • 2021
  • PM2.5 concentration in Seoul could be predicted by deep neural network model. In this paper, the contribution of input factors to the model's prediction results is analyzed using the LRP(Layer-wise Relevance Propagation) technique. LRP analysis is performed by dividing the input data by time and PM concentration, respectively. As a result of the analysis by time, the contribution of the measurement factors is high in the forecast for the day, and those of the forecast factors are high in the forecast for the tomorrow and the day after tomorrow. In the case of the PM concentration analysis, the contribution of the weather factors is high in the low-concentration pattern, and that of the air quality factors is high in the high-concentration pattern. In addition, the date and the temperature factors contribute significantly regardless of time and concentration.

A survey on parallel training algorithms for deep neural networks (심층 신경망 병렬 학습 방법 연구 동향)

  • Yook, Dongsuk;Lee, Hyowon;Yoo, In-Chul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.6
    • /
    • pp.505-514
    • /
    • 2020
  • Since a large amount of training data is typically needed to train Deep Neural Networks (DNNs), a parallel training approach is required to train the DNNs. The Stochastic Gradient Descent (SGD) algorithm is one of the most widely used methods to train the DNNs. However, since the SGD is an inherently sequential process, it requires some sort of approximation schemes to parallelize the SGD algorithm. In this paper, we review various efforts on parallelizing the SGD algorithm, and analyze the computational overhead, communication overhead, and the effects of the approximations.

Evaluation of Maximum Dry Unit Weight Prediction Model Using Deep Neural Network Based on Particle Size Analysis (입도분석에 기반한 Deep Neural Network를 이용한 최대 건조 단위중량 예측 모델 평가)

  • Kim, Myeong Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.3
    • /
    • pp.15-28
    • /
    • 2023
  • The compaction properties of the soil change depending on the physical properties, and are also affected by crushing of the particles. Since the particle size distribution of soil affects the engineering properties of the soil, it is necessary to analyze the material properties to understand the compaction characteristics. In this study, the size of each sieve was classified into four in the particle size analysis as a material property, and the compaction characteristics were evaluated by multiple regression and maximum dry unit weight. As a result of maximum dry unit weight prediction, multiple regression analysis showed R2 of 0.70 or more, and DNN analysis showed R2 of 0.80 or more. The reliability of the prediction result analyzed by DNN was evaluated higher than that of multiple regression, and the analysis result of DNN-T showed improved prediction results by 1.87% than DNN. The prediction of maximum dry unit weight using particle size distribution seems to be applied to evaluate the compacting state by identifying the material characteristics of roads and embankments. In addition, the particle size distribution can be used as a parameter for predicting maximum dry unit weight, and it is expected to be of great help in terms of time and cost of applying it to the compaction state evaluation.