국내외에서 AI기반 의료 솔루션 시장은 빠른 속도로 확장 중이며 이에 따른 다양한 의학 분야에서 많은 기법을 통한 의료 AI 시스템이 등장하고 있다. 그러나 기존 다양한 AI 연구가 이뤄짐에도 아직 중환자의 징후 예측에는 많은 어려움이 있다. 또한, 중환자의 경우 현재 의료진만으로 모든 환자를 필요한 시기에 진료하기엔 어려움이 있고 환자 상태 조기 예측이 필수적임을 관련 다양한 의학 기사를 통해 쉽게 인지할 수 있다. 본 연구에서는 위와 같은 문제점을 해결하고자 중환자의 진료 결과 데이터를 활용하여 환자의 진료 후 상태를 예측하는 모델을 생성하였다. '용인시산업진흥원'에서 제공하는 60만여 건에 달하는 환자 데이터를 수집하여, 중환자 상태 징후를 조기에 예측할 수 있는 머신러닝/딥러닝 기반 알고리즘으로 구현한 여러 모델에 대해 비교했을 때 딥러닝(DNN) 기반 모델이 약 92%의 분류 정확도를 측정할 수 있었다.
가시설 흙막이의 굴착중 안정성 분석에 대한 연구를 위해서는 지반의 정확한 물성을 평가할 수 있는 역해석 기술과 실시간으로 계측되는 데이터를 분석하여 안정성을 평가할 수 있는 학습모델의 개발이 필요하다. 본 연구에서는 CIP공법이 적용된 굴착 현장을 대상으로 차분진화 알고리즘을 통해 굴착 중인 지반의 물성치를 추정하고, 벽체의 안정성을 평가할 수 있는 DNN 모델을 개발하였다. 차분진화 알고리즘의 적용성 분석을 위하여 2층 지반으로 구성된 모델에 대한 역해석을 수행하였고, 역해석 결과 지반의 탄성계수, 점착력, 내부마찰각을 97%의 정확도로 예측할 수 있는 것으로 분석되었다. DNN 모델의 학습데이터 구축을 위하여 30,000개의 케이스에 대하여 해석을 수행하였다. 앵커축력, 부등침하, 벽체 변위, 벽체 구조적 안정성 등 각각의 평가요소에 대한 안정성 평가 등급을 제시하였고, 그에 따라 데이터를 학습하였다. 학습된 DNN 모델의 적용성 분석 결과, 앵커의 축력, 부등침하, 벽체의 변위, 벽체의 구조 안정성에 대해 평균 94% 이상으로 벽체의 안정성을 예측할 수 있는 것으로 평가되었다.
태양광 발전은 일사량만 있으면 전기에너지를 얻을 수 있기 때문에, 새로운 에너지 공급원으로 용도가 급증하고 있다. 본 논문은 실제 태양광 발전 시스템의 컨버터 출력을 이용하여 장단기 출력 예측을 하였다. 예측 알고리즘은 다중선형회귀와 머신러닝의 지도학습 중 분류모델인 서포트 벡터 머신 그리고 DNN과 LSTM 등 딥러닝을 이용하였다. 또한 기상요소의 입출력 구조에 따라 3개의 모델을 이용하였다. 장기 예측은 월별, 계절별, 연도별 예측을 하였으며, 단기 예측은 7일간의 예측을 하였다. 결과로서 RMSE 측도에 의한 예측 오차로 비교해 본 결과 다중선형회귀와 SVM 보다는 딥러닝 네트워크가 예측 정확도 측면에서 더 우수하였다. 또한, DNN 보다 시계열 예측에 우수한 모델인 LSTM이 예측 정확도 측면에서 우수하였다. 입출력 구조에 따른 실험 결과는 모델 1보다 모델 2가 오차가 적었으며, 모델 2보다는 모델 3이 오차가 적었다.
돌발상황으로 인한 비반복정체로 발생하는 높은 교통비용과 혼잡을 효과적으로 해소하기 위해서 돌발상황 처리시간을 예측하는 것은 중요하다. 본 연구에서는 인공신경망을 활용한 예측모델 개발을 위해 국내 도로상황에 적합한 돌발상황 처리시간 영향요인을 분석하고, 이를 학습데이터로 생성하였다. 기존 연구에서 장시간 소요되는 돌발상황 처리시간에 대한 과소 예측 문제가 발생하여 이에 대한 해결방안으로 본 연구에서는 SMOGN기법을 적용한 오버샘플링 학습데이터를 생성하여 이를 모델에 적용하였다. 그 결과 SMOGN기법을 적용한 DNN모델이 MAE 18.3분으로 연구 과정에서 구축된 모델 중 가장 높은 정확도로 돌발상황 처리시간을 예측하여, 기존에 개발된 예측모델의 한계점을 보완할 수 있을 것으로 기대한다.
본 논문은 한국어 자소를 인식 단위로 사용한 hybrid CTC-Attention 모델 기반 end-to-end speech recognition을 제안한다. End-to-end speech recognition은 기존에 사용된 DNN-HMM 기반 음향 모델과 N-gram 기반 언어 모델, WFST를 이용한 decoding network라는 여러 개의 모듈로 이루어진 과정을 하나의 DNN network를 통해 처리하는 방법을 말한다. 본 논문에서는 end-to-end 모델의 출력을 추정하기 위해 자소 단위의 출력구조를 사용한다. 자소 기반으로 네트워크를 구성하는 경우, 추정해야 하는 출력 파라미터의 개수가 11,172개에서 49개로 줄어들어 보다 효율적인 학습이 가능하다. 이를 구현하기 위해, end-to-end 학습에 주로 사용되는 DNN 네트워크 구조인 CTC와 Attention network 모델을 조합하여 end-to-end 모델을 구성하였다. 실험 결과, 음절 오류율 기준 10.05%의 성능을 보였다.
정확한 오염물질 예측은 기상학, 자연재해, 기후변화 연구 등 현장에서 필수적인 과제 중 하나이다. 주변 관측소에서 얻은 데이터를 사용하는 경우 모델 학습을 위한 불필요한 데이터로 인해 예측 결과에 왜곡 문제가 있을 수 있습니다. 따라서, 우리는 종합적인 대기질 지수 행동에 영향을 미치는 요인을 제공하는 최적의 데이터 소스를 찾기 위해 네트워크 방식을 사용했습니다. 본 연구에서는 2015년부터 2020년까지 우리나라의 6개 오염물질과 종합적인 대기질 지수 예측에 대한 네트워크 기법을 적용한 LSTM 및 DNN 모델을 적용하였다. 본 연구는 미세먼지(PM10), 초미세먼지(PM2.5), 오존(O3), 이산화황(SO2), 이산화질소(NO2), 일산화탄소(CO) 등 6가지 오염물질을 기반으로 종합적인 대기질 지수를 예측하는 2단계로 구성되어 있다. LSTM을 이용하여, 개별적으로 예측된 6가지 오염물질을 이용하여 DNN 모형을 이용하여 종합적인 대기질 지수를 예측한다. 6가지 오염물질에 대한 각 모델의 예측능력과 종합적인 대기질 지수 예측은 관측된 대기질 데이터와 비교하여 평가하였다. 본 연구는 심층신경망 모델과 네트워크 방식을 결합한 것이 높은 예측력을 제공함을 보여주었으며, 종합적인 대기질 지수 예측을 위한 최적의 모델로 선정되었다. 재난관리의 필요성이 증가함에 따라 네트워크 방식의 딥러닝 모델은 자연재해 피해를 줄이고 재난관리를 개선할 수 있는 충분한 잠재력을 가질 것으로 기대된다.
컴퓨터 비전 분야에서 You Look Only Once(YOLO)와 ResNet 등의 모델은 실시간 성능과 높은 정확도로 인해 널리 사용되고 있다. 그러나 실제 환경에 이러한 모델들을 적용하려면 런타임 호환성, 메모리 사용량, 컴퓨팅 리소스 및 실시간 조건 등의 요소를 고려해야 한다. 본 연구에서는 세 가지 심층 모델 런타임 ONNX Runtime, TensorRT 및 OpenCV DNN의 특성을 비교하고, 2가지 모델에 대한 성능을 분석한다. 이러한 분석을 통해 현장 적용을 위한 런타임 선택에 기준을 제공해 주는 것이 논문의 목표이다. 실험에서는 차량 번호판 인식 및 분류 업무에 대해 소요 시간, 메모리 사용량, 정확도 평가 지표를 기반으로 런타임들을 비교한다. 실험 결과, ONNX Runtime은 복잡한 객체 탐지 성능이 우수하며, OpenCV DNN은 제한된 메모리 환경에 적합하고, TensorRT는 복잡한 모델의 실행 속도가 우수하다는 것을 보여준다.
도로연장의 지속적인 증가와 공용기간이 상당히 경과한 노후 노선이 늘어남에 따라 도로포장에 대한 유지관리비용은 점차 증가하고 있어, 예방적 유지관리를 통해 비용을 최소화 하는 방안에 대한 필요성이 제기되고 있다. 예방적 유지관리를 위해서는 도로포장의 정확한 열화 예측을 통한 전략적 유지관리 계획 수립이 필요하다. 이에 본 연구에서는 고속도로포장 열화예측 모델 개발을 위해 딥러닝 모델 중 가장 보편적으로 많이 사용하는 심층신경망(DNN)과 시계열 데이터 분석에 강점을 가진 순환신경망(RNN)을 사용하였으며, 두 개의 모델의 성능을 비교 분석하여 우수한 모델을 제안하였다. RNN의 Vanishing Gradient Problem을 해결하기 위해 좀 더 복잡한 형태의 RNN구조인 LSTM(Long short-term memory circuits)을 사용하였다. 학습 결과, RNN-LSTM 모델의 RMSE 값이 0.102로 DNN모델보다 낮아 성능이 더 우수하였다. 또한, 대상구간의 시간경과별 평균 도로포장 상태 예측치와 실제 도로포장 상태 실측치의 비교를 통해 RNN-LSTM 모델의 높은 정확도를 검증하였다. 따라서 향후 고속도로 콘크리트 포장의 유지관리 계획 수립시 유지보수 수요 추정을 위한 열화 예측 모델로는 DNN 모델보다 시계열 분석에 강한 RNN-LSTM의 모델을 제안한다.
일사량은 자연 생태계와 농업 생태계에서 에너지 수지와 물 순환을 추정하는데 중요한 변수이다. 일별 일사량을 추정하기 위해 심층 신경망(DNN) 모델이 개발되었다. 일조시간 등의 변수보다 기상 관측소에서의 가용성이 더 높은 온도와 강수량이 심층 신경망 모델의 입력 자료로 사용되었다. five-fold crossvalidation 을 사용하여 심층 신경망을 훈련시키고 검증하였다. 국내 15 개의 기상 관측소에서 30 년 이상 장기간의 기상 자료가 수집되었다. Cross-validation을 통해 얻어진 심층 신경망 모델은 수원 지역 기상 관측소의 일별 일사량 추정치에 대해 비교적 작은 RMSE($3.75MJ\;m^{-2}\;d^{-1}$) 값을 가졌다. 심층 신경망 모델은 수원 지역 기상 관측소의 일사량의 변위의 약 68%를 설명했다. 1985 년과 1998 년의 일사량 관측값은 일조시간에 비해 상당히 낮은 값이 관측되었다. 이는 후속 연구에서 일사량 관측 데이터의 품질 평가가 필요할 것임을 시사했다. 해당 연도의 데이터를 분석에서 제외했을 때, 심층 신경망 모델의 추정값은 통계적 수치가 약간 높게 나타났다. 예를 들어, $R^2$ 와 RMSE 의 값은 각각 0.72 와 $3.55MJ\;m^{-2}\;d^{-1}$ 이었다. 심층 신경망 모델은 기온과 강수량을 통해 일사량을 추정하는데 유용하며, 이는 미래 기후 시나리오 자료에 대해서 활용할 수 있을 것이다. 따라서, 공간에 대한 제약이 완화된 심층 신경망 모델은 작물 모델의 입력 자료로 일사량이 필요한 작물 생산성에 대한 기후 변화 영향 평가에 유용하게 활용될 수 있을 것이다.
음성 인식기를 대기모드에서 동작 모드로 전환하기 위해 발화하는 짧은 단어를 기동어(Wake Up Word, WUW)라고 하며, 음성 인식기를 실제로 사용하는 사용자가 지정한 기동어를 사용자 정의 기동어라고 한다. 본 논문에서는 이러한 사용자 정의 기동어를 인식하기 위해 기존의 Gaussian Mixture Model-Hidden Markov Model(GMM-HMM) 기반의 시스템, Linear Discriminant Analysis(LDA)를 적용한 LDA-GMM-HMM 기반의 시스템과, LDA-GMM-HMM 모델에서 GMM을 Deep Neural Network(DNN)로 대체한 LDA-DNN-HMM 기반의 시스템을 제작하고 각 시스템의 사용자 정의 기동어 인식 성능 및 비기동어 거절 성능을 비교한다. 또한 기동어 인식기의 체감 성능을 향상시키고자 각 모델에 threshold를 적용하여 기동어 인식 실패율을 약 10 % 수준으로 감소 시킨 후에 비기동어(non-WUW)의 거절 실패율을 비교 평가한다. Threshold 적용시에 LDA-DNN-HMM 기반의 시스템의 경우 기동어 인식 실패율 9.84 % 수준에서 비기동어 거절 실패율이 0.0058 %의 인식 성능을 나타내어 LDA-GMM-HMM 시스템 보다 약 4.82배 향상된 비기동어 거절 성능을 나타낸다. 이러한 결과는 본 논문에서 제작한 LDA-DNN-HMM 모델이 사용자 정의 기동어 인식 시스템을 구축하는데 효과적임을 입증한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.