• Title/Summary/Keyword: DNA.

Search Result 17,955, Processing Time 0.042 seconds

Single-Molecule Methods for Investigating the Double-Stranded DNA Bendability

  • Yeou, Sanghun;Lee, Nam Ki
    • Molecules and Cells
    • /
    • v.45 no.1
    • /
    • pp.33-40
    • /
    • 2022
  • The various DNA-protein interactions associated with the expression of genetic information involve double-stranded DNA (dsDNA) bending. Due to the importance of the formation of the dsDNA bending structure, dsDNA bending properties have long been investigated in the biophysics field. Conventionally, DNA bendability is characterized by innate averaging data from bulk experiments. The advent of single-molecule methods, such as atomic force microscopy, optical and magnetic tweezers, tethered particle motion, and single-molecule fluorescence resonance energy transfer measurement, has provided valuable tools to investigate not only the static structures but also the dynamic properties of bent dsDNA. Here, we reviewed the single-molecule methods that have been used for investigating dsDNA bendability and new findings related to dsDNA bending. Single-molecule approaches are promising tools for revealing the unknown properties of dsDNA related to its bending, particularly in cells.

Reversible DNA Information Hiding based on Circular Histogram Shifting (순환형 히스토그램 쉬프팅 기반 가역성 DNA 정보은닉 기법)

  • Lee, Suk-Hwan;Kwon, Seong-Geun;Kwon, Ki-Ryong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.12
    • /
    • pp.67-75
    • /
    • 2016
  • DNA computing technology makes the interests on DNA storage and DNA watermarking / steganography that use the DNA information as a newly medium. DNA watermarking that embeds the external watermark into DNA information without the biological mutation needs the reversibility for the perfect recovery of host DNA, the continuous embedding and detecting processing, and the mutation analysis by the watermark. In this paper, we propose a reversible DNA watermarking based on circular histogram shifting of DNA code values with the prevention of false start codon, the preservation of DNA sequence length, and the high watermark capacity, and the blind detection. Our method has the following features. The first is to encode nucleotide bases of 4-character variable to integer code values by code order. It makes the signal processing of DNA sequence easy. The second is to embed the multiple bits of watermark into -order coded value by using circular histogram shifting. The third is to check the possibility of false start codon in the inter or intra code values. Experimental results verified the our method has higher watermark capacity 0.11~0.50 bpn than conventional methods and also the false start codon has not happened in our method.

Single-stranded DNA Enhances the Rate of Product Release During Nucleotide Hydrolysis Reaction by T7 DNA Helicase

  • Kim, Dong-Eun;Jeong, Yong-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.10
    • /
    • pp.1618-1622
    • /
    • 2006
  • Bacteriophage T7 gp4A' is a ring-shaped hexameric DNA helicase that catalyzes duplex DNA unwinding using dTTP hydrolysis as an energy source. To investigate the effect of single-stranded DNA (ssDNA) on the kinetic pathway of dTTP hydrolysis by the T7 DNA helicase complexed with ssDNA, we have first determined optimal concentration of long circular M13 single-stranded DNA and pre-incubation time in the absence of $Mg^{2+}$ which is necessary for the helicase-ssDNA complex formation. Steady state dTTP hydrolysis in the absence of $Mg^{2+}$ by the helicase-ssDNA complex provided $k_{cat}$ of $8.5\;{\times}\;10^{-3}\;sec^{-1}$. Pre-steady state kinetics of the dTTP hydrolysis by the pre-assembled hexameric helicase was monitored by using the rapid chemical quench-flow technique both in the presence and absence of M13 ssDNA. Pre-steady state dTTP hydrolysis showed distinct burst kinetics in both cases, indicating that product release step is slower than dTTP hydrolysis step. Pre-steady state burst rates were similar both in the presence and absence of ssDNA, while steady state dTTP hydrolysis rate in the presence of ssDNA was much faster than in the absence of ssDNA. These results suggest that single-stranded DNA stimulates dTTP hydrolysis reaction by T7 helicase by enhancing the rate of product release step.

Study on the Genetic Variation of the Mitochondrial DNA in the Beet Armyworm, Spodoptera exigua (H bner), Using PCR-RFLP (PCR-RFLP를 이용한 파방나방 (Spodoptera exigua(H bner)) 미토콘트리아 DNA의 유전변이 연구)

  • 김용균;이명렬;정충렬
    • Korean journal of applied entomology
    • /
    • v.37 no.1
    • /
    • pp.23-30
    • /
    • 1998
  • Restriction fragment length polymorphism (RFLP) of a DNA has been a useful tool for analyzing genetic variation. This research was performed to establish an RFLP analytic method on the mitochondrial DNA (mtDNA) of the beet armyworm, Spodoptera exigua (Hiibner). To do this, total size of the mtDNA was measured and polymerase chain reaction (PCR) primers were selected. Its mitochondrial genome size was ca. 16kb. From a serial PCR test of 29 primers refered to the compilation of Simon et al. (1994), 22 primers were selected to amplify its mtDNA fragments. These primers resulted in short (300-700 bp) or long (1000-2000 bp) DNA products which represented a total or partial sequence of each of CO-I, CO-11, Cyt-B, ND-1, 12s rRNA, 16s rRNA, and some tRNAs. PCR-RFLP was performed in some variable mtDNA regions with 8 kinds of 4bp recognizing restriction enzymes. Different populations from Andong, Kyungsan, and Sunchun did not show any restriction site polymorphisms but had some length variation in certain regions of mtDNA.

  • PDF

The Effect of Temperature and Cycles on Amplification of DNA by PCR (PCR에 의한 DNA 증폭에 미치는 온도와 Cycle 수)

  • Kim, Chong-Ho;Shin, Sang-Hee
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.36 no.1
    • /
    • pp.33-37
    • /
    • 2004
  • In order to study the effect of temperature of denaturation, annealing and extension and cycles on amplification of DNA by PCR method, We isolated the hepatitis B virus DNA from hepatitis B patient blood and compared the density of DNA amplified by Reference PCR Program (denaturation at $94^{\circ}C$ for 30 sec., annealing at $60^{\circ}C$ for 1 min., extension at $72^{\circ}C$ for 1 min., holding at $72^{\circ}C$ for 5min., 30 cycles) that is usually used in laboratory to the density of DNA amplified by PCR program changed only the denaturation temperature or annealing temperature or extension temperature. We amplified about 341bp of hepatitis B virus DNA by Reference PCR Program from hepatitis patient blood, but the DNAs denatured at $72^{\circ}C$ or $60^{\circ}C$ were not detectable on photoradiography film. The DNA amplified at $37^{\circ}C$ of annealing temperature was not detectable, but the DNA annealed at $72^{\circ}C$ was detectable the lower density of DNA than the DNA amplified by Reference PCR Program. Each DNA amplified by PCR program changed only the extension temperature to $37^{\circ}C$ or $60^{\circ}C$ was almost same density as DNA amplified by Reference PCR Program. We compared the density of hepatitis B virus DNA amplified by Reference PCR Program for 30 cycles, 20 cycles, 10 cycles, and 5 cycles. The DNA cycled for 20 cycles was not amplified well as cycled for 30 cycles, but the DNA was detectable on the photoradiography film. The DNAs amplified for 10 cycles or 5 cycles were not detectable on photoradiorgaphy film. The concentration of hepatitis B virus DNA amplified in Reference PCR condition for 30 cycles, 20 cycles, 10 cycles, and 5 cycles were $72{\mu}g/m{\ell}$, $83{\times}10^{-3}{\mu}g/m{\ell}$, $27{\times}10^{-6}{\mu}g/m{\ell}$, and nondetectable, respectively.

  • PDF

Effect of Cobaltous Chloride on the Repair of UV-induced DNA Damage (UV에 의해 손상된 DNA 회복에 미치는 cobaltous chloride의 효과)

  • Kim, Kug-Chan;Kim, Yung-Jin;Lee, Kang-Suk
    • Journal of Radiation Protection and Research
    • /
    • v.20 no.2
    • /
    • pp.71-78
    • /
    • 1995
  • To develop methods to reduce radiation risk and apply such knowledge to improvement of radiation protection, the effects of cobaltous chloride known as bioantimutagen on the function of E. coli RecA protein involved in the repair of DNA damage were examined. The results demonstrated two distinct effects of cobaltous chloride on the RecA protein function necessary for the strand exchange reaction. Cobaltous chloride enhanced the ability of RecA protein to displace SSB protein from single-stranded DNA and the duplex DNA-dependent ATPase activity. RecA protein was preferentially bound with UV-irradiated supercoiled DNA as compared with nonirradiated DNA The binding of RecA protein to UV-irradiated supercoiled DNA was enhanced in a dose-dependent manner. It is likely that studies on the factors affecting repair efficiency and the DNA repair proteins may provide information on the repair of ionizing radiation-induced DNA damage and the mechanism for DNA radioprotection.

  • PDF

Development of an SH-SAW Sensor for Detection of DNA (DNA 측정용 SH-SAW 센서 개발)

  • Hur Youngjune;Pak Yukeun Eugene;Roh Yongrae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.160-165
    • /
    • 2005
  • We have developed SH (shear horizontal) surface acoustic wave (SAW) sensors for detection of the immobilization and hybridization of DNA (deoxyribonucleic acid) on the gold coated delay line of transverse SAW devices. The experiments of DNA immobilization and hybridization were performed with 15-mer oligonucleotides (probe and complementary target DNA). The sensor consists of twin SAW delay line oscillators operating at 100 MHz fabricated on $36^{\circ}$ rotated Y-cut $LiTaO_3$ piezoelectric single crystals. The relative change in the frequency of the two oscillators was monitored to detect the hybridization between target DNA and immobilized probe DNA in pH 7.4 PBS (phosphate buffered saline) solution. The measurement results showed a good response of the sensor to the mass loading effects of the DNA immobilization and hybridization with the sensitivity up to $1.55{\cal}ng/{\cal}ml/Hz$.

Formation of DNA-Protein Crosslink at Oxidized Abasic Site Mediated by Human DNA Polymerase Iota and Mitochondrial DNA Polymerase Gamma

  • Son, Mi-Young;Jun, Hyun-Ik;Goo, Sun-Young;Sung, Jung-Suk
    • Biomedical Science Letters
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • Human genomic DNA is continuously attacked by oxygen radicals originated from cellular metabolic processes and numerous environmental carcinogens. 2-deoxyribonolactone (dL) is a major type of oxidized abasic (AP) lesion implicated in DNA strand scission, mutagenesis, and formation of covalent DNA-protein crosslink (DPC) with DNA polymerase (Pol) ${\beta}$. We show here that human DNA polymerase (Pol)${\iota}$ and mitochondrial $Pol{\gamma}$ give rise to stable DNA-protein crosslink (DPC) formation that is specifically mediated by dL lesion. $Pol{\gamma}$ mediates DPC formation at the incised dL residue by its 5'-deoxyribose-5-phosphate (dRP) lyase activity, while $Pol{\gamma}$ cross links with dL thorough its intrinsic dRP lyase and AP lyase activities. Reactivity in forming dL-mediated DPC was significantly higher with $Pol{\gamma}$ than with $Pol{\iota}$. DPC formation by $Pol{\gamma}$, however, can be reduced by an accessory factor of $Pol{\gamma}$ holoenzyme that may attenuate deleterious effects of crosslink adducts on mitochondrial DNA. Comparative kinetic analysis of DPC formation showed that the rate of DPC formation with either $Pol{\iota}$ or $Pol{\gamma}$ was lower than that with $Pol{\beta}$. These results revealed that the activity of catalytic lyase in DNA polymerases determine the efficiency of DPC formation with dL damages. Irreversible crosslink formation of such DNA polymerases by dL lesions may result in a prolonged strand scission and a suicide of DNA repair proteins, both of which could pose a threat to the genetic and structural integrity of DNA.

  • PDF

Regulation of Gene Expression and 3-Dimensional Structure of DNA (유전자 발현 조절과 DNA 3차원적 구조와의 관계)

  • 김병동
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1987.07a
    • /
    • pp.149-155
    • /
    • 1987
  • Growth and development of a higher plant, or any living organism for that matter, could be defined as an orderly expression of the genome in time and space in close interaction with the environment. During differentiation and development of a tissue or organ a group of genes must be selectively turned on or turned off mainly by trans-acting regulators. In this general concept of regulation of regulation of gene expression, a DNA molecule is recognized at a specific nucleotide sequence by DNA-binding factors. Molecular biology of the regulatory factors such as hormones, and their receptors, target DNA sequences and DNA-binding proteins are well advanced. What is not clearly understood is the molecular basis of the interactions between DNA and binding factors, expecially of the usages of the dyad symmetry of the target DNA sequences and the dimeric nature of the DNA-binding proteins. A unique 3-dimensional structure of DNA has been proposed that may play an important role in the orderly expression of the gene. A foldback intercoil (FBI) DNA configuration which was originally found by electron microscopy among mtDNA molecules from pearl millet has some unique features. The FBI configuration of DNA is believed to be formed when a flexible double helix folds back and interwines in the widened major grooves resulting in a four stranded, intercoil DNA whose thickness is the same as that of double stranded DNA. More recently, the FBI structure of DNA has been also induced in vitro by a novel enzyme which was purified from pearl millet mitochondria. It has been proposed that the FBI DNA could be utillized in intramolecular recombination which leads to inversion or deletion, and in intermolecular recombination which can lead to either site-specific recombination, genetic recombination via single strand invasion, or cross strand recombination. The structure and function of DNA in 3-dimensional aspect is emphasized for better understanding orderly expression of genes during growth and development.

  • PDF