• Title/Summary/Keyword: DNA-protein kinase

Search Result 295, Processing Time 0.05 seconds

Molecular Characterization of a Protein Kinase Gene in Chiness Cabbage(Brassica campestrics subsp. napus var. pekinensis)

  • Jeong, Sang-Ho;Ahn, Ji-Hoon;Lee, June-Seung;Lee, Jong-Seob
    • Animal cells and systems
    • /
    • v.1 no.1
    • /
    • pp.135-142
    • /
    • 1997
  • Random sequencing of expressed sequence tags in roots of Chinese cabbage led to isolation of a partial cDNA clone, BR77, which encoded a putative protein kinase. Using the BR77 cDNA as a probe, we isolated a full-length cDNA encoding the Brassica campestris protein kinase 1 (Bcpk1). The Bcpt1 cDNA contained one open reading frame encoding a polypeptide of 439 amino acids. The putative polypeptide consisted of a short N-terminal region and a protein kinase catalytic domain. The catalytic domain of Bcpkl showed a high homology to cAMP- and calcium- phospholipid-dependent subfamilies of serine/threonine protein kineses. Eleven major catalytic domains in protein kineses were well conserved in Bcpk1. However, Bcpk1 contained a unique nonhomologous intervening sequence between subdomains VII and VIII, which was not found in protein kineses of animals and lower eukaryotes. Genomic DNA gel blot analysis showed that Bcpt1 genes might be present as three copies in the Chinese cabbage genome. These imply that Bcpk1 belongs to a plant-specific serine/threonine protein kinase subfamily.

  • PDF

The Identification of Type II DNA Topoisomerase-Associated Protein Kinase Activity from Regenerating Rat Liver (재생 쥐간에서 분리한 DNA topoisomerase II에 결합된 protein kinase 활성)

  • 이치건;박세호;남궁록;김찬길;박상대
    • The Korean Journal of Zoology
    • /
    • v.36 no.3
    • /
    • pp.367-372
    • /
    • 1993
  • We have found a protein kinase activity that is tightly associated with type II DNA topoisomerase purified from regenerating rat liver. The activities of protein kinase and topoisomerase II were not separable when the enzyme was subjected to analytical chromatographies (Hydroxyapatite, phosphocellulose, and double strand DNA cellulose) and glycerol gradient sedimentation. The kinase activity from purified rat topoisomerase II was also inactivated by the topoisomerase II inhibitors such as N-ethylmaleimide or novobiocin. The evidences, however, do not rule out a possibility that the kinase activity resides in a polypeptide other than the topoisomerase II protein. The topoisomerase II-associated protein kinase required Mg++ for its activity, and this requirement was not substituted by any other mono- or divalent ions. Histone H1 act as a strong stimulator and a good substrate for the kinase activity and other histones and ${\alpha}$-casein could not substitute the effect of histone H1.

  • PDF

Effect on the Inhibition of DNA-PK in Breast Cancer Cell lines(MDA-465 and MDA-468) with DNA-PKcs Binding Domain Synthetic Peptide of Ku80 (Ku80의 DNA-PKcs 결합부위 합성 Peptide 투여에 의한 유방암세포의 DNA-dependent protein kinase 억제 효과)

  • 김충희;김태숙;문양수;정장용;강정부;김종수;강명곤;박희성
    • Journal of Veterinary Clinics
    • /
    • v.21 no.3
    • /
    • pp.253-258
    • /
    • 2004
  • DNA double-strand break (DSB) is a serious treat for the cells including mutations, chromosome rearrangements, and even cell death if not repaired or misrepaired. Ku heterodimer regulatory DNA binding subunits (Ku70/Ku80) bound to double strand DNA breaks are able to interact with 470-kDa DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and the interaction is essential for DNA-dependent protein kinase (DNA-PK) activity. The Ku80 mutants were designed to bind Ku70 but not DNA end binding activity and the peptides were treated in breast cancer cells for co-therapy strategy to see whether the targeted inhibition of DNA-dependent protein kinase (DNA-PK) activity sensitized breast cancer cells to ionizing irradiation or chemotherapy drug to develop a treatment of breast tumors by targeting proteins involved in damage-signaling pathway and/or DNA repair. We designed domains of Ku80 mutants, 26 residues of amino acids (HN-26) as a control peptide or 38 (HNI-38) residues of amino acids which contain domains of the membrane-translocation hydrophobic signal sequence and the nuclear localization sequence, but HNI-38 has additional twelve residues of peptide inhibitor region. We observed that the synthesized peptide (HNI-38) prevented DNA-PKcs from binding to Ku70/Ku80, resulting in inactivation of DNA-PK complex activity in breast cancer cells (MDA-465 and MDA-468). Consequently, the peptide treated cells exhibited poor to no DNA repair, and became highly sensitive to irradiation or chemotherapy drugs. The growth of breast cancer cells was also inhibited. These results demonstrate the possibility of synthetic peptide to apply breast cancer therapy to induce apoptosis of cancer cells.

Biochemical Properties of the Minichromosomal Maintenance Complex after the Phosphorylation by Cdc7 Kinase

  • Lee, Joon-Kyu
    • Animal cells and systems
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • Previous studies showed that Cdc7 kinase of Schizosaccharomyces pombe phosphorylated the minichromosome maintenance (Mcm) complex efficiently in the presence of spMcm10 protein. The biochemical properties of the phosphorylated Mcm complexes were examined to understand the activation mechanism of the Mcm complex by Cdc7 kinase. The phosphorylation of Mcm complex in the presence of spMcm10 by Cdc7 kinase did not affect the stability of the Mcm complex containing all six subunits, and the changes in the sedimentation properties were not observed after the phosphorylation. The reconstitution of the Mcm complex using the purified proteins showed that the phosphorylation of Mcm2 proteins did not affect the interactions between Mcm proteins. The phosphorylation of the Mcm2-7 complex at the same condition also did not activate the other biochemical activities such as DNA helicase and single stranded (ss) DNA binding activities. On the other hand, spMcm10 protein that was used for the stimulation of Mcm phosphorylation showed single stranded DNA binding activity, and inhibited the DNA helicase activity of the Mcm4/6/7 complex. These inhibitory effects were reduced by the addition of Cdc7 kinase, suggesting that the phosphorylation by Cdc7 kinase decreased the interactions between spMcm10 and the Mcm complex. Taken together, these results suggested that the phosphorylation by Cdc7 kinase alone is not sufficient for the remodeling and the activation of the Mcm complex, and the additional factors or the phosphorylations might be required for the activation of the Mcm complex.

DNA-dependent Protein Kinase Mediates V(D)J Recombination via RAG2 Phosphorylation

  • Hah, Young-Sool;Lee, Jung-Hwa;Kim, Deok-Ryong
    • BMB Reports
    • /
    • v.40 no.3
    • /
    • pp.432-438
    • /
    • 2007
  • V(D)J recombination, a site-specific gene rearrangement process occurring during the lymphocyte development, begins with DNA double strand breaks by two recombination activating gene products (RAG1/2) and finishes with the repair process by several proteins including DNA-dependent protein kinase (DNA-PK). In this report, we found that RAG2 was specifically phosphorylated by DNA-PK at the $365^{th}$ serine residue, and this phosphorylated RAG2 affected the V(D)J recombination activity in cells in the GFP expression-based assay. While the V(D)J recombination activity between wild-type RAG2 and mutant S365A RAG2 in the assay using a signal joint substrate was undistinguishable in DNA-PK deficient cells (M059J), the activity with wild-type RAG2 was largely increased in DNA-PK proficient cells (M059K) in comparison with mutant RAG2, suggesting that RAG2 phosphorylation by DNA-PK plays a crucial role in the signal joint formation during V(D)J recombination.

DNA-Dependent Protein Kinase Catalytic Subunit (DNA-PKcs): Beyond the DNA Double-Strand Break Repair

  • Ye-Rim Lee;Gi-Sue Kang;Taerim Oh;Hye-Ju Jo;Hye-Joon Park;G-One Ahn
    • Molecules and Cells
    • /
    • v.46 no.4
    • /
    • pp.200-205
    • /
    • 2023
  • DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a member of the phosphatidylinositol 3-kinase-related kinase family is a well-known player in repairing DNA double-strand break through non-homologous end joining pathway. This mechanism has allowed us to understand its critical role in T and B cell development through V(D)J recombination and class switch recombination, respectively. We have also learned that the defects in these mechanisms lead to the severely combined immunodeficiency (SCID). Here we highlight some of the latest evidence where DNA-PKcs has been shown to localize not only in the nucleus but also in the cytoplasm, phosphorylating various proteins involved in cellular metabolism and cytokine production. While it is an exciting time to unveil novel functions of DNA-PKcs, one should carefully choose experimental models to study DNA-PKcs as the experimental evidence has been shown to differ between cells of defective DNA-PKcs and those of DNA-PKcs knockout. Moreover, while there are several DNA-PK inhibitors currently being evaluated in the clinical trials in an attempt to increase the efficacy of radiotherapy or chemotherapy, multiple functions and subcellular localization of DNA-PKcs in various types of cells may further complicate the effects at the cellular and organismal level.

Inhibition of DNA-dependent Protein Kinase by Blocking Interaction between Ku Complex and Catalytic Subunit of DNA-dependent Protein Kinase

  • Kim, Chung-Hui;Cuong, Dang-Van;Kim, Jong-Su;Kim, Na-Ri;Kim, Eui-Yong;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.1
    • /
    • pp.9-14
    • /
    • 2003
  • Recent studies indicated that cancer cells become resistant to ionizing radiation (IR) and chemotherapy drugs by enhanced DNA repair of the lesions. Therefore, it is expected to increase the killing of cancer cells and reduce drug resistance by inhibiting DNA repair pathways that tumor cells rely on to escape chemotherapy. There are a number of key human DNA repair pathways which depend on multimeric polypeptide activities. For example, Ku heterodimer regulatory DNA binding subunits (Ku70/Ku80) on binding to double strand DNA breaks (DSBs) are able to interact with 470-kDa DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and are essential for DNA-dependent protein kinase (DNA-PK) activity. It has been known that DNA-PK is an important factor for DNA repair and also is a sensor-transmitting damage signal to downstream targets, leading to cell cycles arrest. Our ultimate goal is to develop a treatment of breast tumors by targeting proteins involved in damage-signaling pathway and/or DNA repair. This would greatly facilitate tumor cell cytotoxic activity and programmed cell death through DNA damaging drug treatment. Therefore, we designed a domain of Ku80 mutants that binds to Ku70 but not DNA end binding activity and used the peptide in co-therapy strategy to see whether the targeted inhibition of DNA-PK activity sensitized breast cancer cells to irradiation or chemotherapy drug. We observed that the synthesized peptide (HNI-38) prevented DNA-PKcs from binding to Ku70/Ku80, thus resulting in inactivation of DNA-PK activity. Consequently, the peptide treated cells exhibited poor to no DNA repair, and became highly sensitive to IR or chemotherapy drugs, and the growth of breast cancer cells was inhibited. Additionally, the results obtained in the present study also support the physiological role of resistance of cancer cells to IR or chemotherapy.

Protein kinase C-mediated Stimulatory Effect of $Ginsenoside-{Rg_1}$ on the Proliferation of SK-HEP-1 (SK-HEP-1 사람 간세포에서 Protein kinase C 신호전달체계를 통한 $인삼사포닌-{Rg_1}$의 DNA 합성 촉진 효과)

  • 공희진;이광열;정은아;이유희;김신일;이승기
    • YAKHAK HOEJI
    • /
    • v.39 no.6
    • /
    • pp.661-665
    • /
    • 1995
  • Ginsenoside-Rg$_{1}$(G-Rg$_{1}$) has been shown to stimulate DNA synthetic activity in SK-HEP-1 cells. This study was therefore designed to determine in SK-HEP-1 cells whether the stimulatory effect of G-Rg$_{1}$ may be mediated by protein kinase C (PKC) which is known to play a key role in the signal transduction pathway leading to the cell proliferation. Using the tn situ PKC assay method, the PKC enzyme activity was determined in SK-HEP-1 cell cultures in response to G-Rg$_{1}$ at 3*10$^{-5}$ M or phorbol 12-myristate 13-acetate(PMA) at 10$^{-6}$ M which in the enzyme activity by 1.5- and 7-fold, respectively. Furthermore, G-Rg$_{1}$, was also able to synergistically increase the enzyme activity by 11-fold m the cell cultures in the presence of PMA. These stimulatory effects of G-Rg$_{1}$ or PMA on the DNA synthetic activity and the PKC activity were ablished by a specific PKC inhibitor, GF109203X. These results suggest that the stimulatory effect of G-Rg$_{1}$ on the DNA synthetic activity may be partly due to stimulation of PKC-mediated signal transduction pathway leading to the proliferation of SK-HEP-1 cells.

  • PDF

Protein Kinase A Increases DNA-Binding Activity of Testis-Brain RNA-Binding Protein

  • Ju, Hyun-Hee;Ghil, Sung-Ho
    • Biomedical Science Letters
    • /
    • v.14 no.2
    • /
    • pp.77-81
    • /
    • 2008
  • Testis brain RNA-binding protein (TB-RBP) is a DNA/RNA binding protein. TB-RBP is mainly expressed in testis and brain and highly conserved protein with several functions, including chromosomal translocations, DNA repair, mitotic cell division, and mRNA transport, stabilization, and storage. In our previous study, we identified TB-RBP as an interacting partner for the catalytic subunit $(C{\alpha})$ of protein kinase A(PKA) and verified their interaction with several biochemical analyses. Here, we confirmed interaction between $C{\alpha}$. and TB-RBP in mammalian cells and determined the effect of $C{\alpha}$. on the function of TB-RBP. The activation of $C{\alpha}$. increased the TB-RBP function as a DNA-binding protein. These results suggest that the function of TB-RBP can be modulated by PKA and provide insights into the diverse role of PKA.

  • PDF

Expression of DNA-dependent Protein Kinase and Its Relationship with Epidermal Growth Factor Receptor Signaling in Metastatic Cancer Cell Lines (DNA-PK 및 표피성장인자수용체의 신호전달이 암전이에 미치는 영향)

  • Hwang Jee Young;Kim Sun Hee;Kang Chi Dug;Yoon Man Soo
    • Journal of Life Science
    • /
    • v.15 no.3 s.70
    • /
    • pp.406-414
    • /
    • 2005
  • The genetic instability of cancer cells may be related to inappropriately activated DNA repair pathways. In present study, the modulated expression of DNA-dependent protein kinase (DNA-PK), a major DNA repair protein, in human cancer metastatic cells was tested. The expressions of Ku70/80, regulatory subunit of DNA-PK, and the Ku DNA-binding activity in various highly metastatic cell lines were higher than those in each parental cell line. Also, the expression of DNA-PKcs, catalytic subunit of DNA-PK, and the kinase activity of the whole DNA-PK complex in highly metastatic cells were significantly increased as compared to those of parental cells, suggesting that the enhanced DNA repair capacity of metastatic cells could be associated with aberrant use of DNA repair, which may mediate tumor progression and metastatic potential. Increased EGFR (epidermal growth factor receptor) signaling has been associated with tumor invasion and metastasis, and the linkage between EGFR-mediated signaling and DNA-PK has been suggested. This study showed that PKI166, the new EGFR tyrosine kinase inhibitor, modulated the expressions of Ku70/80 and DNA-PKcs and also revealed the chemosensitization effect of PKI166 against metastatic cells may be in part due to inhibition of Ku70/80. These results suggest that interference in EGFR signaling by EGFR inhibitor resulted in the impairment of DNA repair activity, and thus DNA-PK could be possible molecular targets for therapy against metastatic cancer cells.