• Title/Summary/Keyword: DNA steganography

Search Result 3, Processing Time 0.016 seconds

DNA Information Hiding Method for DNA Data Storage (DNA 데이터 저장을 위한 DNA 정보 은닉 기법)

  • Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.10
    • /
    • pp.118-127
    • /
    • 2014
  • DNA data storage refers to any technique for storing massive digital data in base sequence of DNA and has been recognized as the future storage medium recently. This paper presents an information hiding method for DNA data storage that the massive data is hidden in non-coding strand based on DNA steganography. Our method maps the encrypted data to the data base sequence using the numerical mapping table and then hides it in the non-coding strand using the key that consists of the seed and sector length. Therefore, our method can preserve the protein, extract the hidden data without the knowledge of host DNA sequence, and detect the position of mutation error. Experimental results verify that our method has more high data capacity than conventional methods and also detects the positions of mutation errors by the parity bases.

Consecutive Difference Expansion Based Reversible DNA Watermarking (연속적 차분 확장 기반 가역 DNA 워터마킹)

  • Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.7
    • /
    • pp.51-62
    • /
    • 2015
  • Of recent interests on high capacity DNA storage, DNA watermarking for DNA copyright protection, and DNA steganography for DNA secret communication are augmented, the reversible DNA watermarking is much needed both to embed the watermark without changing the functionality of organism and to perfectly recover the host DNA sequence. In this paper, we address two ways of DE based reversible DNA watermarking using noncoding DNA sequence. The reversible DNA watermarking should consider the string structure of a DNA sequence, the organism functionality, the perfect recovery, and the high embedding capacity. We convert the string sequence of four characters in noncoding region to the decimal coded values and embed the watermark bit into coded values by two ways; DE based multiple bits embedding (DE-MBE) using pairs of neighbor coded values and consecutive DE-MBE (C-DE-MBE). Two ways process the comparison searching to prevent the false start codon that produces false coding region. Experimental results verified that our ways have more high embedding capacity than conventional methods and produce no false start codon and recover perfectly the host sequence without the reference sequence. Especially C-DE-MBE can embed more high two times than DE-MBE.

Reversible DNA Information Hiding based on Circular Histogram Shifting (순환형 히스토그램 쉬프팅 기반 가역성 DNA 정보은닉 기법)

  • Lee, Suk-Hwan;Kwon, Seong-Geun;Kwon, Ki-Ryong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.12
    • /
    • pp.67-75
    • /
    • 2016
  • DNA computing technology makes the interests on DNA storage and DNA watermarking / steganography that use the DNA information as a newly medium. DNA watermarking that embeds the external watermark into DNA information without the biological mutation needs the reversibility for the perfect recovery of host DNA, the continuous embedding and detecting processing, and the mutation analysis by the watermark. In this paper, we propose a reversible DNA watermarking based on circular histogram shifting of DNA code values with the prevention of false start codon, the preservation of DNA sequence length, and the high watermark capacity, and the blind detection. Our method has the following features. The first is to encode nucleotide bases of 4-character variable to integer code values by code order. It makes the signal processing of DNA sequence easy. The second is to embed the multiple bits of watermark into -order coded value by using circular histogram shifting. The third is to check the possibility of false start codon in the inter or intra code values. Experimental results verified the our method has higher watermark capacity 0.11~0.50 bpn than conventional methods and also the false start codon has not happened in our method.