• Title/Summary/Keyword: DNA segregation

Search Result 73, Processing Time 0.027 seconds

The Role of Cytoskeletal Elements in Shaping Bacterial Cells

  • Cho, Hongbaek
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.3
    • /
    • pp.307-316
    • /
    • 2015
  • Beginning from the recognition of FtsZ as a bacterial tubulin homolog in the early 1990s, many bacterial cytoskeletal elements have been identified, including homologs to the major eukaryotic cytoskeletal elements (tubulin, actin, and intermediate filament) and the elements unique in prokaryotes (ParA/MinD family and bactofilins). The discovery and functional characterization of the bacterial cytoskeleton have revolutionized our understanding of bacterial cells, revealing their elaborate and dynamic subcellular organization. As in eukaryotic systems, the bacterial cytoskeleton participates in cell division, cell morphogenesis, DNA segregation, and other important cellular processes. However, in accordance with the vast difference between bacterial and eukaryotic cells, many bacterial cytoskeletal proteins play distinct roles from their eukaryotic counterparts; for example, control of cell wall synthesis for cell division and morphogenesis. This review is aimed at providing an overview of the bacterial cytoskeleton, and discussing the roles and assembly dynamics of bacterial cytoskeletal proteins in more detail in relation to their most widely conserved functions, DNA segregation and coordination of cell wall synthesis.

Expression and cDNA Cloning of klp-12 Gene Encoding an Ortholog of the Chicken Chromokinesin, Mediating Chromosome Segregation in Caenorhabditis elegans

  • Ali, M. Yusuf;Khan, M.L.A.;Shakir, M.A.;Kobayashi, K. Fukami;Nishikawa, Ken;Siddiqui, Shahid S.
    • BMB Reports
    • /
    • v.33 no.2
    • /
    • pp.138-146
    • /
    • 2000
  • In eukaryotes, chromosomes undergo a series of complex and coordinated movements during cell division. The kinesin motor proteins, such as the chicken Chromokinesin, are known to bind DNA and transport chromosomes on spindle microtubles. We previously cloned a family of retrograde C-terminus kinesins in Caenorhabditis elegans that mediate chromosomal movement during embryonic development. Here we report the cloning of a C. elegans klp-12 cDNA, encoding an ortholog of chicken Chromokinesin and mouse KIF4. The KLP-12 protein contains 1609 amino acid and harbors two leucine zipper motifs. The insitu RNA hybridization in embryonic stages shows that the klp-12 gene is expressed during the entire embryonic development. The RNA interference assay reveals that, similar to the role of Chromokinesin, klp-12 functions in chromosome segregation. These results support the notion that during mitosis both types, the anterograde N-terminus kinesins such as KLP-12 and the retrograde C-terminus kinesins, such as KLP-3, KLP-15, KLP-16, and KLP-17, may coordinate chromosome assembly at the metaphase plate and chromosomal segregation towards the spindle poles in C. elegans.

  • PDF

NCAPH Stabilizes GEN1 in Chromatin to Resolve Ultra-Fine DNA Bridges and Maintain Chromosome Stability

  • Kim, Jae Hyeong;Youn, Yuna;Hwang, Jin-Hyeok
    • Molecules and Cells
    • /
    • v.45 no.11
    • /
    • pp.792-805
    • /
    • 2022
  • Repairing damaged DNA and removing all physical connections between sister chromosomes is important to ensure proper chromosomal segregation by contributing to chromosomal stability. Here, we show that the depletion of non-SMC condensin I complex subunit H (NCAPH) exacerbates chromosome segregation errors and cytokinesis failure owing to sister-chromatid intertwinement, which is distinct from the ultra-fine DNA bridges induced by DNA inter-strand crosslinks (DNA-ICLs). Importantly, we identified an interaction between NCAPH and GEN1 in the chromatin involving binding at the N-terminus of NCAPH. DNA-ICL activation, using ICL-inducing agents, increased the expression and interaction between NCAPH and GEN1 in the soluble nuclear and chromatin, indicating that the NCAPH-GEN1 interaction participates in repairing DNA damage. Moreover, NCAPH stabilizes GEN1 within chromatin at the G2/M-phase and is associated with DNA-ICL-induced damage repair. Therefore, NCAPH resolves DNA-ICL-induced ultra-fine DNA bridges by stabilizing GEN1 and ensures proper chromosome separation and chromosome structural stability.

Analysis of Non-segregated S-allele Strain by Single-Locus Hypothesis in Self-incompatible Brassica campestris (자가불화합성 Brassica campestris에 있어서 단일유전자좌가설에 의해 분리되지 않는 S-유전자 계통의 분석)

  • 노일섭
    • Journal of Plant Biology
    • /
    • v.36 no.2
    • /
    • pp.127-132
    • /
    • 1993
  • Self-incompatibility in Brassica campestris is controlled by multi-allele system in a single genetic locus, the S locus, and it is elucidated that S-glycoproteins are S gene products. In this experiments, we examined the genetic mode(pollen tube behavior and segregation of S-glycoprotein), characteristic of S-glycoproteins and DNA constitution within nuclear genome on S gene family that unexplained by single locus model, and investigated the segregation pattern of S-glycoproteins in bred F1 generation. By diallel cross among the 15 plants within one family the existence of three types of homozygotes and three types of heterozygotes were observed, and segregation of S-allele could not explained by single locus model. From the results of IEF-immunoblot analysis for non-segregated individual plant, the segregation pattern of S specific bands was corresponded with results of diallel cross except with one case(SaSa genotype). The molecular weight of 6 different S-genotype varied in near by 50 kD, and each genotype expressed with 2 or 3 bands. Specific bands in SaSa, SbSb, ScSc has almost similar molecular weight between them. Southern analysis of genomic DNA probed with S-glycoprotein cDNA for 6 different genotypes revealed that there are clear difference in polymorphism, multiple bands of hybridization, when restriction enzymes of EcoR I were used. It could be assumed that there are several sequences related to the S-glycoprotein structural genes within their nuclear genome. Therefore, we suggested the possibilities that S-allele system could be controlled by multi-locus, that dominance-recessive interactions could be explained by modifier gene or supressor gene based on the results of abnormal segregation of S-glycoprotein in bred F1. The F2 analyses are progressing in now.

  • PDF

Correlation of A Mating Type with Mycelial Growth Rate in Basidiospore-derived Monokaryons of Lentinula edodes (표고 담자포자 유래 단핵균사의 A 교배형과 생장 속도 상관관계)

  • Park, Mi-Jeong;Ryoo, Rhim;Jang, Yeongseon;Ka, Kang-Hyeon
    • The Korean Journal of Mycology
    • /
    • v.49 no.4
    • /
    • pp.487-495
    • /
    • 2021
  • Lentinula edodes is a tetrapolar basidiomycete and its mating type is determined by two unlinked genetic loci, A and B. Theoretically, one dikaryotic strain could produce basidiospores with four different mating types in a 1:1:1:1 ratio. Previous studies have described the skewed segregation ratio of mating types among basidiospores of L. edodes. However, they were based only on morphological characteristics, such as clamp connection, to determine mating types. To clarify whether the segregation distortion of mating types is a general phenomenon in L. edodes, we analyzed the mating types of basidiospores obtained from three cultivars of L. edodes using recently developed DNA markers. We found that the skewed segregation of mating types was strain-specific, as reported previously. Among the three cultivars, one cultivar showed balanced segregation, while the other two displayed distorted segregation. We also examined the relationship between mating type and mycelial growth rate of monokaryons derived from each basidiospore. It was found that the monokaryotic mycelial growth rate was related to the A mating type but not to the B mating type. Therefore, homeodomain transcription factor genes that reside on the A locus or other genes linked to the A locus affect the growth rate of monokaryotic mycelia. Considering the importance of mating types in mushroom breeding, this study is informative for establishing an efficient breeding strategy as well as for understanding the mechanism of monokaryotic mycelial growth.

Transposable Elements Arrangement in Genome and Their Applications for Analysis of Evolutional Events

  • Maekawa, Hideaki
    • Proceedings of the Korean Society of Sericultural Science Conference
    • /
    • 2003.10a
    • /
    • pp.24-27
    • /
    • 2003
  • The ribosomal RNA gene (rDNA) cluster was located in the nucleolus organizer and was genetically determined as one locus. We speculated by using sequence differences in the functional rDNA unit that the segregation time between Chinese and Japanese types of B. mandarina is about three million years ago. The differences of the amount of inserted non-LTR retrotransposons, R1Bm and R2Bm, in rDHA cluster were used for the identification of B.mori strains. (omitted)

  • PDF

α-Kleisin subunit of cohesin preserves the genome integrity of embryonic stem cells

  • Seobin Yoon;Eui-Hwan Choi;Seo Jung Park;Keun Pil Kim
    • BMB Reports
    • /
    • v.56 no.2
    • /
    • pp.108-113
    • /
    • 2023
  • Cohesin is a ring-shaped protein complex that comprises the SMC1, SMC3, and α-kleisin proteins, STAG1/2/3 subunits, and auxiliary factors. Cohesin participates in chromatin remodeling, chromosome segregation, DNA replication, and gene expression regulation during the cell cycle. Mitosis-specific α-kleisin factor RAD21 and meiosis-specific α-kleisin factor REC8 are expressed in embryonic stem cells (ESCs) to maintain pluripotency. Here, we demonstrated that RAD21 and REC8 were involved in maintaining genomic stability and modulating chromatin modification in murine ESCs. When the kleisin subunits were depleted, DNA repair genes were downregulated, thereby reducing cell viability and causing replication protein A (RPA) accumulation. This finding suggested that the repair of exposed single-stranded DNA was inefficient. Furthermore, the depletion of kleisin subunits induced DNA hypermethylation by upregulating DNA methylation proteins. Thus, we proposed that the cohesin complex plays two distinct roles in chromatin remodeling and genomic integrity to ensure the maintenance of pluripotency in ESCs.

Cloning of Bacillus amyloliquefaciens amylase gene using YEp 13 as a vector II. Expression of cloned amylase gene in Saccharomyces cerevisiae (YEp 13 vector를 이용한 Bacillus amyloliquefaciens amylase gene의 cloning II. Saccharomyces cerevisiae에서의 발현)

  • 김관필;서정훈
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.3
    • /
    • pp.209-212
    • /
    • 1986
  • $\alpha$-Amylase gene of Bacillus amyloliquetaciens was cloned on plasmid YEp13, S. cerevisiae-E. coli shuttle vector. Hybrid plasmid pTG17, carrying $\alpha$-amylase gene of B. amyloliquefaciens, was transformed to E. coli and the expression of it in yeast was investigated. This plasmid was unstable in E. coli and produced two minor plasmids, pTG17-1 and PTG17-2, which resulted from the segregation of it. Transformant of S. cerevisiae MC16 with pTG17-1 plasmid was not appeared on SD medium because of the Leu2 gene defection. S. cerevisiae could be transformed by the hybrid plasmid, and $\alpha$-amylase activity of the yeast transformant was detected by somogyi-Nelson method and agar diffusion method.

  • PDF

Identification of Subspecies-specific STS Markers and Their Association with Segregation Distortion in Rice(Oryza sativa L.)

  • Chin, Joong-Hyoun;Kim, Jung-Hee;Jiang, Wenzhu;Chu, Sang-Ho;Woo, Mi-Ok;Han, Longzhi;Brar, Darshan;Koh, Hee-Jong
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.3
    • /
    • pp.175-184
    • /
    • 2007
  • Two subspecies, japonica and indica, have been reported in rice, which differ in several ecotypic traits. However, reproductive barriers in hybrid progenies between subspecies have been major obstacles in breeding programs using inter-subspecific hybridization. As the first step to elucidate the reproductive barriers, we developed subspecies-specific(SS) STS markers in this study. A total of 765 STS primers were designed through comparing DNA sequences at every $2{\sim}3$cM interval between japonica and indica rices, which are available at Web DBs such as IRGSP, NCBI, TIGR, and GRAMENE, and tested for subspecies-specificity using 15 indica and 15 japonica varieties of diverse origin. Of them, 67 STS markers were identified as SS STS markers and their subspecies-specificity scores were estimated. The SS markers were dispersed throughout the genome along chromosomes. Of them, 64 SS markers were mapped on an RIL population derived from a Dasanbyeo(indica)/TR22183(japonica) cross. Genomic inclination of RILs was evaluated based on the genotyping with different types of markers. Association test between markers and segregation distortion revealed that segregation distortion might not be the cause of generating SS markers. The SS markers will be applicable to estimate the genomic inclination of varieties or lines and to study the differentiation of indica and japonica, and ultimately to breed true hybrid rice varieties in which desirable characters from both subspecies are recombined.

  • PDF