DOI QR코드

DOI QR Code

Correlation of A Mating Type with Mycelial Growth Rate in Basidiospore-derived Monokaryons of Lentinula edodes

표고 담자포자 유래 단핵균사의 A 교배형과 생장 속도 상관관계

  • Park, Mi-Jeong (Division of Forest Microbiology, Department of Forest Bioresources, National Institute of Forest Science) ;
  • Ryoo, Rhim (Division of Forest Microbiology, Department of Forest Bioresources, National Institute of Forest Science) ;
  • Jang, Yeongseon (Division of Forest Microbiology, Department of Forest Bioresources, National Institute of Forest Science) ;
  • Ka, Kang-Hyeon (Division of Forest Microbiology, Department of Forest Bioresources, National Institute of Forest Science)
  • 박미정 (국립산림과학원 산림생명자원연구부 산림미생물연구과) ;
  • 유림 (국립산림과학원 산림생명자원연구부 산림미생물연구과) ;
  • 장영선 (국립산림과학원 산림생명자원연구부 산림미생물연구과) ;
  • 가강현 (국립산림과학원 산림생명자원연구부 산림미생물연구과)
  • Received : 2021.10.21
  • Accepted : 2021.12.01
  • Published : 2021.12.31

Abstract

Lentinula edodes is a tetrapolar basidiomycete and its mating type is determined by two unlinked genetic loci, A and B. Theoretically, one dikaryotic strain could produce basidiospores with four different mating types in a 1:1:1:1 ratio. Previous studies have described the skewed segregation ratio of mating types among basidiospores of L. edodes. However, they were based only on morphological characteristics, such as clamp connection, to determine mating types. To clarify whether the segregation distortion of mating types is a general phenomenon in L. edodes, we analyzed the mating types of basidiospores obtained from three cultivars of L. edodes using recently developed DNA markers. We found that the skewed segregation of mating types was strain-specific, as reported previously. Among the three cultivars, one cultivar showed balanced segregation, while the other two displayed distorted segregation. We also examined the relationship between mating type and mycelial growth rate of monokaryons derived from each basidiospore. It was found that the monokaryotic mycelial growth rate was related to the A mating type but not to the B mating type. Therefore, homeodomain transcription factor genes that reside on the A locus or other genes linked to the A locus affect the growth rate of monokaryotic mycelia. Considering the importance of mating types in mushroom breeding, this study is informative for establishing an efficient breeding strategy as well as for understanding the mechanism of monokaryotic mycelial growth.

표고는 사극성의 교배계를 갖는 담자균의 일종으로, 표고의 교배형은 A와 B라 불리는 서로 독립된 두 유전자좌에 의해 결정된다. 이론적으로 하나의 이핵균주는 네 개의 서로 다른 교배형을 갖는 담자포자를 1:1:1:1의 비율로 만들 수 있다. 과거 연구 결과에 따르면, 표고 담자포자에서 교배형이 편향된 분리비로 나타남이 보고되었다. 하지만 이러한 결과들은 꺽쇠연결과 같은 형태학적 특성만을 기반으로 교배형을 결정했다는 한계가 있다. 이에 본 연구에서는 교배형의 편향된 분리비가 표고에서 일반적인 현상인지 보다 명확하게 알아보기 위해서 최근에 보고된 DNA 마커를 활용하여 세 가지 표고 품종들의 담자포자에 대한 교배형 분석을 수행하였다. 그 결과 교배형의 편향된 분리비가 과거 보고와 일치하게 균주 특이적인 특성임을 확인하였다. 분석한 세 품종 중 한 품종을 제외하고 나머지 두 품종에서 편향된 분리비가 관찰된 것이다. 다음으로는 각 담자포자 유래 단핵균사들의 생장 속도와 교배형의 상관관계를 분석하였다. 그 결과 표고 단핵균사의 생장 속도는 B 교배형과는 관계가 없고, A 교배형과 관계가 있음을 확인하였다. 따라서 A 교배형 유전자좌에 존재하는 호메오도메인 전사인자 혹은 A 교배형 유전자좌와 연관된 유전자들이 단핵균사의 생장에 영향을 줄 것으로 보인다. 버섯 신품종 육성에서 교배형의 중요성을 고려할 때, 본 연구는 효율적인 신품종 육성 전략을 세우거나 단핵균사 생장 기작을 이해하는 데 도움을 줄 것으로 기대된다.

Keywords

Acknowledgement

This work was supported by the Golden Seed Project of 'Breeding of new strains of shiitake for cultivar protection and substitution of import [213007-05-5-SBH10]' provided by the Ministry of Agriculture, Food and Rural Affairs, Ministry of Oceans and Fisheries, Rural Development Administration and Korea Forest Service.

References

  1. Raudaskoski M, Kothe E. Basidiomycete mating type genes and pheromone signaling. Eukaryot Cell 2010;9:847-59. https://doi.org/10.1128/EC.00319-09
  2. Kues U. From two to many: multiple mating types in Basidiomycetes. Fungal Biol Rev 2015;29:126-66. https://doi.org/10.1016/j.fbr.2015.11.001
  3. Casselton LA, Olesnicky NS. Molecular genetics of mating recognition in basidiomycete fungi. Microbiol Mol Biol Rev 1998;62:55-70. https://doi.org/10.1128/mmbr.62.1.55-70.1998
  4. Au CH, Wong MC, Bao D, Zhang M, Song C, Song W, Law PT, Kues U, Kwan HS. The genetic structure of the A mating-type locus of Lentinula edodes. Gene 2014;535:184-90. https://doi.org/10.1016/j.gene.2013.11.036
  5. Wu L, van Peer A, Song W, Wang H, Chen M, Tan Q, Song C, Zhang M, Bao D. Cloning of the Lentinula edodes B mating-type locus and identification of the genetic structure controlling B mating. Gene 2013;531:270-8. https://doi.org/10.1016/j.gene.2013.08.090
  6. Ha B, Kim S, Kim M, Moon YJ, Song Y, Ryu JS, Ryu H, Ro HS. Diversity of A mating type in Lentinula edodes and mating type preference in the cultivated strains. J Microbiol 2018;56:416-25. https://doi.org/10.1007/s12275-018-8030-6
  7. Ha B, Moon YJ, Song Y, Kim S, Kim M, Yoon CW, Ro HS. Molecular analysis of B mating type diversity in Lentinula edodes. Scientia Hortic 2019;243:55-63. https://doi.org/10.1016/j.scienta.2018.08.009
  8. Larraya LM, Perez G, Ritter E, Pisabarro AG, Ramirez L. Genetic linkage map of the edible basidiomycete Pleurotus ostreatus. Appl Environ Microbiol 2000;66:5290-300. https://doi.org/10.1128/AEM.66.12.5290-5300.2000
  9. Larraya LM, Perez G, Iribarren I, Blanco JA, Alfonso M, Pisabarro AG, Ramirez L. Relationship between monokaryotic growth rate and mating type in the edible basidiomycete Pleurotus ostreatus. Appl Environ Microbiol 2001;67:3385-90. https://doi.org/10.1128/AEM.67.8.3385-3390.2001
  10. Cheng S, Lin F, Xu X, Li A, Lin F. Genetic analysis of segregation distortion of mating-type factors in Lentinula edodes. Prog Nat Sci 2005;15:684-8. https://doi.org/10.1080/10020070512331342760
  11. Cheng S, Lin F. Genetic analysis of distorted segregation ratio of mating types among basidiospores in Lentinula edodes. Agr Sci China 2008;7:415-22. https://doi.org/10.1016/S1671-2927(08)60084-X
  12. Miyazaki K, Neda H, Shiraishi S. Tetrad analyses of mating types in shiitake (Lentinula edodes). Bulletin of FFPRI 2005;4:217-23.
  13. Foulongne-Oriol M, Spataro C, Cathalot V, Monllor S, Savoie JM. An expanded genetic linkage map of an intervarietal Agaricus bisporus var. bisporus x A. bisporus var. burnettii hybrid based on AFLP, SSR and CAPS markers sheds light on the recombination behaviour of the species. Fungal Genet Biol 2010;47:226-36. https://doi.org/10.1016/j.fgb.2009.12.003
  14. Hartmann FE, Duhamel M, Carpentier F, Hood ME, Foulongne-Oriol M, Silar P, Malagnac F, Grognet P, Giraud T. Recombination suppression and evolutionary strata around mating-type loci in fungi: documenting patterns and understanding evolutionary and mechanistic causes. New Phytol 2021;229:2470-91. https://doi.org/10.1111/nph.17039
  15. Thomas A, Shykoff J, Jonot O, Giraud T. Sex-ratio bias in populations of the phytopathogenic fungus Microbotryum violaceum from several host species. Int J Plant Sci 2003;164:641-7. https://doi.org/10.1086/375374
  16. Callac P, Spataro C, Caille A, Imbernon M. Evidence for outcrossing via the Buller phenomenon in a substrate simultaneously inoculated with spores and mycelium of Agaricus bisporus. Appl Environ Microbiol 2006;72:2366-72. https://doi.org/10.1128/AEM.72.4.2366-2372.2006
  17. Rabe F, Bosch J, Stirnberg A, Guse T, Bauer L, Seitner D, Rabanal FA, Czedik-Eysenberg A, Uhse S, Bindics J, et al. A complete toolset for the study of Ustilago bromivora and Brachypodium sp. as a fungal-temperate grass pathosystem. Elife 2016;5:e20522. https://doi.org/10.7554/elife.20522
  18. Simchen G. Monokaryotic variation and haploid selection in Schizophyllum commune. Heredity 1966;21:241-63. https://doi.org/10.1038/hdy.1966.21
  19. Gong WB, Liu W, Lu YY, Bian YB, Zhou Y, Kwan HS, Cheung MK, Xiao Y. Constructing a new integrated genetic linkage map and mapping quantitative trait loci for vegetative mycelium growth rate in Lentinula edodes. Fungal Biol 2014;118:295-308. https://doi.org/10.1016/j.funbio.2014.01.001
  20. Ka KH, Ryoo R, Jang Y, Park YA, Jeong YS, Kang JJ, Heo G, Jeon SM. Characteristics of fruiting bodies formed upon monohybrid cross of Lentinula edodes strains. Kor J Mycol 2019;47:173-9. https://doi.org/10.4489/KJM.20190021
  21. Ha BS, Kim S, Ro HS. Isolation and characterization of monokaryotic Strains of Lentinula edodes showing higher fruiting rate and better fruiting body production. Mycobiology 2015;43:24-30. https://doi.org/10.5941/MYCO.2015.43.1.24
  22. Oh YL, Jang KY, Kong WS, Shin PG, Oh MJ, Choi IG. Cultural and morphological characteristics of a new white button mushroom cultivar 'Saedo'. Kor J Mycol 2016;44:94-9. https://doi.org/10.4489/KJM.2016.44.2.94
  23. Lee JW, Han YS, Shin PG. Breeding of a new oyster mushroom cultivar 'Daejang 3ho'. J Mushrooms 2015;13:135-8. https://doi.org/10.14480/JM.2015.13.2.135
  24. Kim MK, Ryu JS, Lee YH, Kim HR. Breeding of a long shelf-life strain for commercial cultivation by mono-mono crossing in Pleurotus eryngii. Sci Hort 2013;162:265-70. https://doi.org/10.1016/j.scienta.2013.08.028
  25. Gong WB, Li L, Zhou Y, Bian YB, Kwan HS, Cheung MK, Xiao Y. Genetic dissection of fruiting body-related traits using quantitative trait loci mapping in Lentinula edodes. Appl Microbiol Biotechnol 2016;100:5437-52. https://doi.org/10.1007/s00253-016-7347-5
  26. Zhang L, Gong W, Li C, Shen N, Gui Y, Bian Y, Kwan HS, Cheung MK, Xiao Y. RNASeq-based high-resolution linkage map reveals the genetic architecture of fruiting body development in shiitake mushroom, Lentinula edodes. Comput Struct Biotechnol J 2021;19:1641-53. https://doi.org/10.1016/j.csbj.2021.03.016