• Title/Summary/Keyword: DNA repair genes

Search Result 154, Processing Time 0.03 seconds

The Production of mutant protein by a transcription-based mechanism and in vivo technique for determining transcriptional mutagenesis

  • You, Ho-Jin
    • Proceedings of the PSK Conference
    • /
    • 2001.04a
    • /
    • pp.48-55
    • /
    • 2001
  • When an elongating RNA polymerase encounters DNA damage on the template strand of a transcribed gene it can either be arrested by or be transcribed through the lesion. Lesions that arrest RNA polymerases are thought to be subject to transcription-coupled repair, whereas that damage that is bypassed can cause miscoding, resulting in mutations in the transcript (transcriptional mutagenesis). We have developed a technique using a plasmid-based luciferase reporter assay to determine the extent to which a particular type of DNA base modification is capable of causing transcriptional mutagenesis in vivo. The system uses Escherichia coli strains with different DNA repair backgrounds and is designed to detect phenotypic changes caused by transcriptional mutageneis under nongrowth conditions. In addition, this method is capable of indicating the extent to which a particular DNA repair enzyme (or pathway) suppresses the occurrence of transcriptional mutagenesis. Thus, this technique provides a tool with which the effects of various genes on non-replication-dependent pathways resulting in the generation of mutant proteins can be gauged.

  • PDF

PATHWAYS AND GENES OF DNA DOUBLE-STRAND BREAK REPAIR ASSOCIATED WITH HEAD AND NECK CANCER (DNA 이중나선파손의 수복 과정과 이와 연관된 두경부암 발생 유전자)

  • Oh, Jung-Hwan;Lee, Deok-Won;Ryu, Dong-Mok
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.35 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • DNA double-strand breaks (DSBs) occur commonly in the all living and in cycling cells. They constitute one of the most severe form of DNA damage, because they affect both strand of DNA. DSBs result in cell death or a genetic alterations including deletion, loss of heterozygosity, translocation, and chromosome loss. DSBs arise from endogenous sources like metabolic products and reactive oxygen, and also exogenous factors like ionizing radiation. Defective DNA DSBs can lead to toxicity and large scale sequence rearrangement that can cause cancer and promote premature aging. There are two major pathways for their repair: homologous recombination(HR) and non-homologous end-joining(NHEJ). The HR pathway is a known "error-free" repair mechanism, in which a homologous sister chromatid serves as a template. NHEJ, on the other hand, is a "error-prone" pathway, in which the two termini of the broken DNA molecule are used to form compatible ends that are directly ligated. This review aims to provide a fundamental understanding of how HR and NHEJ pathways operate, cause genome instability, and what kind of genes during the pathways are associated with head and neck cancer.

DNA recombinase Rad51 is regulated with UV-induced DNA damage and the DNA mismatch repair inhibitor CdCl2 in HC11 cells

  • You, Hyeong-Ju;Kim, Ga-Yeon;Kim, Seung-Yeon;Kang, Man-Jong
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.3
    • /
    • pp.121-128
    • /
    • 2021
  • Increasing the efficiency of HR (homologous recombination) is important for a successful knock-in. Rad51 is mainly involved in homologous recombination and is associated with strand invasion. The HR-related mismatch repair system maintains HR fidelity by heteroduplex rejection and repair. Therefore, the purpose of this study is to control Rad51, which plays a critical role in HR, through UV-induced DNA damage. It is also to confirm the effect on the expression of MMR related genes (Msh2, Msh3, Msh6, Mlh1, Pms2) and HR-related genes closely related to HR through treatment with the MMR inhibitor CdCl2. The mRNA expression of Rad51 gene was confirmed in both HC11 cells and mouse testes, but the mRNA expression of Dmc1 gene was confirmed only in mouse testes. The protein expression of Rad51 and Dmc1 gene increased in UV-irradiated HC11 cells. After 72 hours of treatment with 1 ㎛ of CdCl2, the mRNA expression level of Msh3, Pms2, and Rad51 decreased, but the mRNA expression level of Msh6 and Mlh1 increased in HC11 cells. There was no significant difference in Msh2 mRNA expression between CdCl2 untreated-group and the 72 hours treated group. In conclusion, HR-related gene (Rad51) was increased by UV-induced DNA damage. Treatment of the MMR inhibitor CdCl2 in HC11 cells decreased the mRNA expression of Rad51.

Cadmium chloride down-regulates the expression of Rad51 in HC11 cells and reduces knock-in efficiency

  • Ga-Yeon Kim;Man-Jong Kang
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.38 no.3
    • /
    • pp.99-108
    • /
    • 2023
  • Background: Efficient gene editing technology is needed for successful knock-in. Homologous recombination (HR) is a major double-strand break repair pathway that can be utilized for accurately inserting foreign genes into the genome. HR occurs during the S/G2 phase, and the DNA mismatch repair (MMR) pathway is inextricably linked to HR to maintain HR fidelity. This study was conducted to investigate the effect of inhibiting MMR-related genes using CdCl2, an MMR-related gene inhibitor, on HR efficiency in HC11 cells. Methods: The mRNA and protein expression levels of MMR-related genes (Msh2, Msh3, Msh6, Mlh1, Pms2), the HR-related gene Rad51, and the NHEJ-related gene DNA Ligase IV were assessed in HC11 cells treated with 10 μM of CdCl2 for 48 hours. In addition, HC11 cells were transfected with a CRISPR/sgRNA expression vector and a knock-in vector targeting Exon3 of the mouse-beta casein locus, and treated with 10 μM cadmium for 48 hours. The knock-in efficiency was monitored through PCR. Results: The treatment of HC11 cells with a high-dose of CdCl2 decreased the mRNA expression of the HR-related gene Rad51 in HC11 cells. In addition, the inhibition of MMR-related genes through CdCl2 treatment did not lead to an increase in knock-in efficiency. Conclusions: The inhibition of MMR-related gene expression through high-dose CdCl2 treatment reduces the expression of the HR-related gene Rad51, which is active during recombination. Therefore, it was determined that CdCl2 is an inappropriate compound for improving HR efficiency.

Isolation and Characterization of New Family Genes of DNA Damage in Fission Yeast

  • Choi, In-Soon
    • Environmental Mutagens and Carcinogens
    • /
    • v.19 no.1
    • /
    • pp.28-33
    • /
    • 1999
  • The SNF2 family includes proteins from a variety of species with roles I cellular processes such as transcriptional regulation, recombination and various types of DNA repair. Several proteins with unknown function are also included in this family. Here, we report the cloning and characterization of hrp 2+ gene (helicase related gene from S. pombe) which was isolated by PCR amplication using the conserved domain of SNF2 motifs within the ERCC6 gene which encodes a protein involved in DNA excision repair. The hrp2+ gene was isolated by screening with yeast S. pombe genomic library. The isolated cloned contained 6.5 kb insert DNA. Southern blot analysis confirmed that S. pombe chromosome contains the same DNA as hrp2+ gene and this gene exists as a single copy in S. pombe genome. The 4.7 kb transcript of mRNA was identified by Northern blot. To examined the transcriptional regulation of hrp2+ gene, DNA damaging agents were treated. These results indicated that the hrp2+ gene may not be directly involved in DNA replication, but may be involved in damage response pathway.

Effects of Boshimgeonbi-tang on Gene Expression in Hypothalamus of Immobilization-stressed Mouse (보심건비탕(補心健脾湯) 투여가 Stress 유발 Mouse의 Hypothalamus 유전자 발현에 미치는 영향)

  • Lee Seoung-Hee;Chang Gyu-Tae;Kim Jang-Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.6
    • /
    • pp.1585-1593
    • /
    • 2005
  • The genetic effects of restraint stress challenge on HPA axis and the therapeutic effect of Boshimgeonbi-tang on the stress were studied with cDNA microarray analyses, RT-PCR on hypothalamus using an immobilization-stress mice as an animal model. Male CD-1 mice were restrained in a tightly fitted and ventilated vinyl holder for 2hrs once a day, and this challenge was repeated for seven· consecutive days. In the change of body weight it showed that the Boshimgeonbi-tang is effected recovery on weight loss caused by the immobilization-stress. Seven days later, total RNA was extracted from the organs of the mouse, body-labeled with $CyDye^{TM}$ fluorescence dyes and then hybridized to CDNA microarray chip. Scanning and analyzing the array slides were carried out using GenePix4000 series scanner and GenePix $Pro^{TM}$ analyzing program, respectively. The expression profiles of 109 genes out of 6000 genes on the chip were significantly modulated in hypothalamus by the immobilization stress. Energy metabolism-, lipid metabolism-, apoptosis-, stress protein, transcriptional factor, and signal transduction-related genes were transcriptionally activated whereas DNA repair-, protein biosysthesis-, and structure integrity-related genes were down-regulated in hypothalamus. The 58 genes were up-regulated by the mRNA expression folds of 1.5 to 7.9. and the 51 genes were down-regulated by 1.5 - 5.5 fold. The 11 genes among them were selected to confirm the expression profiles by RT-PCR. The mRNA expression levels of Tnfrsf1a (apoptosis), Calm2 (cell cycle), Bag3 (apoptosis), Ogg1 (DNA repair), Aatk (apoptosis), Dffa (apoptosis), Fkbp5 (protein folding) were restored to the normal one by the treatment of Boshimgeonbi-tang.

Mutator effects of plasmid pKM101 and pSL4 to E. coli DNA repair (E. coli DNA 회복에 미치는 플라스미드 pKM101과 pSL4의 mutator 기능)

  • 전홍기;이상률;백형석
    • Korean Journal of Microbiology
    • /
    • v.28 no.2
    • /
    • pp.109-113
    • /
    • 1990
  • The mutagenesis-enhancing plasmid pKM101 and its mutant pSL4 were introduced into Escherichia coli B/r strains possessing different DNA repair capacities ($phr^{-}, recA^{-}, uvrA^{-}, uvrB^{-}$) and determined the protection effect and mutagenecity for UV and MNNG. The mutability and protection effect of plasmid pKM101 and pSL4 were affected by different DNA repair capacity. The mutagenecity and resistance of two plasmids were increased against UV and MNNG, and plasmid pSL4 had a higher effect than pKM101. We suggest that the functional differences between pKM101 and pSL4 is due to the variety of mutator gene.

  • PDF

Genetic Polymorphisms and Cancer Susceptibility of Breast Cancer in Korean Women

  • Kang, Dae-Hee
    • BMB Reports
    • /
    • v.36 no.1
    • /
    • pp.28-34
    • /
    • 2003
  • Breast cancer is the most prevalent cancer among women in Western countries, and its prevalence is also increasing in Asia. The major risk factor for breast cancer can be traced to reproductive events that influence the lifetime levels of hormones. However, a large percentage of breast cancer cases cannot, be explained by these risk factors. The identification of susceptibility factors that predispose individuals to breast cancer (for instance, if they are exposed to particular environmental agents) could possibly give further insight into the etiology of this malignancy and provide targets for the future development of therapeutics. The most interesting candidate genes include those that mediate a range of functions. These include carcinogen metabolism, DNA repair, steroid hormone metabolism, signal transduction, and cell cycle control. We conducted a hospital-based case-control study in South Korea to evaluate the potential modifying role of the genetic polymorphisms of selected low penetrance genes that are involved in carcinogen metabolisms (i.e., CYP1A1, CYP2E1, GSTM1/T1/P1, NAT1/2, etc.), estrogen synthesis and metabolism (i.e., CYP19, CYP17, CYP1B1, COMT, ER-$\alpha$, etc.), DNA repair (i.e., XRCC1/3, ERCC2/4, ATM, AGT, etc.), and signal transduction as well as others (i.e., TGF-$\beta$, IGF-1, TNF-$\beta$, IL-1B, IL-1RN, etc.). We also took into account the potential interaction between these and the known risk factors of breast cancer. The results of selected genes will be presented in this mini-review.

Genome-Wide Response of Deinococcus radiodurans on Cadmium Toxicity

  • Joe, Min-Ho;Jung, Sun-Wook;Im, Seong-Hun;Lim, Sang-Yong;Song, Hyun-Pa;Kwon, Oh-Suk;Kim, Dong-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.4
    • /
    • pp.438-447
    • /
    • 2011
  • Deinococcus radiodurans is extremely resistant to various genotoxic conditions and chemicals. In this study, we characterized the effect of a sublethal concentration (100 ${\mu}M$) of cadmium (Cd) on D. radiodurans using a whole-genome DNA microarray. Time-course global gene expression profiling showed that 1,505 genes out of 3,116 total ORFs were differentially expressed more than 2-fold in response to Cd treatment for at least one timepoint. The majority of the upregulated genes are related to iron uptake, cysteine biosynthesis, protein disulfide stress, and various types of DNA repair systems. The enhanced upregulation of genes involved in cysteine biosynthesis and disulfide stress indicate that Cd has a high affinity for sulfur compounds. Provocation of iron deficiency and growth resumption of Cd-treated cells by iron supplementation also indicates that CdS forms in iron-sulfur-containing proteins such as the [Fe-S] cluster. Induction of base excision, mismatch, and recombinational repair systems indicates that various types of DNA damage, especially base excision, were enhanced by Cd. Exposure to sublethal Cd stress reduces the growth rate, and many of the downregulated genes are related to cell growth, including biosynthesis of cell membrane, translation, and transcription. The differential expression of 52 regulatory genes suggests a dynamic operation of complex regulatory networks by Cd-induced stress. These results demonstrate the effect of Cd exposure on D. radiodurans and how the related genes are expressed by this stress.

α-Kleisin subunit of cohesin preserves the genome integrity of embryonic stem cells

  • Seobin Yoon;Eui-Hwan Choi;Seo Jung Park;Keun Pil Kim
    • BMB Reports
    • /
    • v.56 no.2
    • /
    • pp.108-113
    • /
    • 2023
  • Cohesin is a ring-shaped protein complex that comprises the SMC1, SMC3, and α-kleisin proteins, STAG1/2/3 subunits, and auxiliary factors. Cohesin participates in chromatin remodeling, chromosome segregation, DNA replication, and gene expression regulation during the cell cycle. Mitosis-specific α-kleisin factor RAD21 and meiosis-specific α-kleisin factor REC8 are expressed in embryonic stem cells (ESCs) to maintain pluripotency. Here, we demonstrated that RAD21 and REC8 were involved in maintaining genomic stability and modulating chromatin modification in murine ESCs. When the kleisin subunits were depleted, DNA repair genes were downregulated, thereby reducing cell viability and causing replication protein A (RPA) accumulation. This finding suggested that the repair of exposed single-stranded DNA was inefficient. Furthermore, the depletion of kleisin subunits induced DNA hypermethylation by upregulating DNA methylation proteins. Thus, we proposed that the cohesin complex plays two distinct roles in chromatin remodeling and genomic integrity to ensure the maintenance of pluripotency in ESCs.