• Title/Summary/Keyword: DNA polymerase gamma

Search Result 43, Processing Time 0.031 seconds

Formation of DNA-Protein Crosslink at Oxidized Abasic Site Mediated by Human DNA Polymerase Iota and Mitochondrial DNA Polymerase Gamma

  • Son, Mi-Young;Jun, Hyun-Ik;Goo, Sun-Young;Sung, Jung-Suk
    • Biomedical Science Letters
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • Human genomic DNA is continuously attacked by oxygen radicals originated from cellular metabolic processes and numerous environmental carcinogens. 2-deoxyribonolactone (dL) is a major type of oxidized abasic (AP) lesion implicated in DNA strand scission, mutagenesis, and formation of covalent DNA-protein crosslink (DPC) with DNA polymerase (Pol) ${\beta}$. We show here that human DNA polymerase (Pol)${\iota}$ and mitochondrial $Pol{\gamma}$ give rise to stable DNA-protein crosslink (DPC) formation that is specifically mediated by dL lesion. $Pol{\gamma}$ mediates DPC formation at the incised dL residue by its 5'-deoxyribose-5-phosphate (dRP) lyase activity, while $Pol{\gamma}$ cross links with dL thorough its intrinsic dRP lyase and AP lyase activities. Reactivity in forming dL-mediated DPC was significantly higher with $Pol{\gamma}$ than with $Pol{\iota}$. DPC formation by $Pol{\gamma}$, however, can be reduced by an accessory factor of $Pol{\gamma}$ holoenzyme that may attenuate deleterious effects of crosslink adducts on mitochondrial DNA. Comparative kinetic analysis of DPC formation showed that the rate of DPC formation with either $Pol{\iota}$ or $Pol{\gamma}$ was lower than that with $Pol{\beta}$. These results revealed that the activity of catalytic lyase in DNA polymerases determine the efficiency of DPC formation with dL damages. Irreversible crosslink formation of such DNA polymerases by dL lesions may result in a prolonged strand scission and a suicide of DNA repair proteins, both of which could pose a threat to the genetic and structural integrity of DNA.

  • PDF

Pseudomonas 균주에 있어서 R2 Plasmid 획득에 의한 Gamma-ray 내성증강

  • 조봉금
    • Environmental Mutagens and Carcinogens
    • /
    • v.9 no.2
    • /
    • pp.111-121
    • /
    • 1989
  • Ps. aeruginosa 의 DNA repair 기구 결손변이주인 rec-, Hcr- 그리고 R931 plasmid 를 가진 R2 (Carbenicillin, Kanamycin, Streptomycin) plasmid transconjugants 가 R2 Plasmid 획득에 의해서 Gamma선 및 돌연변이제 (4NQO, NTG)에 대해서도 내성을 증강시키는지를 검토함으로써 방사선에 대한 내성화 기구를 해명하고자 했다. 그리고, DNA repair 기구에 작용하는 DNA polymerase I 생산에 관여하는 유전자가 R2 plasmid에 code 되어 있는지를 검토하여 다음과 같은 결과를 얻었다. 1) Ps. aeruginosa PAO균주의 R2 plasmid transconjugants는 R2 plasmid 획득에 의해 자외선, Gamma선 및 돌연변이제에 대한 내성을 부여받았으나 transconjugant 균주에 따라 다른 종류의 내성결과를 얻어졌다.

  • PDF

MOLECULAR CLONING OF CHICKEN INTERFERON-GAMMA (닭 인터페론 유전자의 클로닝에 관한 연구)

  • ;Hyun Lillehoj
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 1999.11a
    • /
    • pp.34-50
    • /
    • 1999
  • A cDNA encoding chicken interferon-gamma (chIFN-${\gamma}$) was amplified from P34, a CD4$^{+}$ T-cell hybridoma by reverse transcription-polymerase chain reaction (RT-PCR) and cloned into pUC18. THe sequences of cloned PCR products were determined to confirm the correct cloning. Using this cDNA as probe, chicken genomic library from White Leghorn spleen was screened. Phage clones harboring chicken interferon-gamma (chIFN-${\gamma}$) were isolated and their genomic structure elucidated. The chIFN-${\gamma}$ contains 4 exons and 3 introns spanning over 14 kb, and follows the GT/AG rule for correct splicing at the exon/intron boundaries. The four exons encode 41, 26, 57 and 40 amino acids, respectively, suggesting that the overall structure of IFN-${\gamma}$ is evolutionairly conserved in mammalian and avian species. The 5’-untranslated region and signal sequences are located in exon 1. Several AT-rich sequences located in the fourth exon may indicate a role in mRNA turnover. The 5’-flanking region contains sequences homologous to the potential binding sites for the mammalian transcription factors, activator protein-1(AP-1) activator protein-2(AP-2) cAMP-response element binding protein(CREB), activating transcription factor(ATF), GATA-binding fator(GATA), upstream stimulating factor(USF), This suggests that the mechanisms underlying transcriptional regulation of chicken and mammalian IFN-${\gamma}$ genes may be similar.r.

  • PDF

Relationship Between Mitochondrial DNA Copy Number, Metabolic Abnormalities and Hepatic Steatosis (지방간 및 대사 인자들과 말초혈액 백혈구의 사립체 DNA copy 수와의 연관성)

  • Kwon, Kil-Young;Jun, Dae-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.6
    • /
    • pp.2093-2098
    • /
    • 2010
  • Insulin resistance plays a central role in fatty liver, a part of the metabolic syndrome. This study examined the relationship between fatty liver, metabolic abnormalities and mitochondrial DNA [mtDNA] copy number in peripheral blood that is correlated with diabetes or metabolic markers. Fatty liver was assessed by questionnaire on alcohol consumption and abdominal ultrasonography. MtDNA copy number in peripheral leukocytes was measured by a real-time quantitative polymerase chain reaction [PCR]. Among 445 subjects, 148 subjects had hepatic steatosis and 297 were controls. mtDNA copy number was significantly lower in fatty liver group in comparison with that of normal finding group. This result is similar in both groups, alcoholic or non-alcoholic fatty liver group. MtDNA copy number was inversely correlated with alanine aminotransferase [ALT], aspartate aminotransferase [AST], gamma-glutamyltransferase [$\gamma$-GTP], body mass index [BMI], waist circumference, diastolic blood pressure, and free fatty acid. MtDNA copy number in peripheral leukocytes was associated with fatty liver and insulin resistance related factors.

Combined Effect of Ganciclovir and Vidarabine on the Replication, DNA Synthesis, and Gene Expression of Acyclovir-resistant Herpes Simplex Virus (Acyclovir저항성 Herpes Simplex Virus의 복제, DNA합성 및 형질 발현에 미치는 Ganciclovir 및 Vidarabine의 병용효과에 관한 연구)

  • Yang, Young-Tai;Cheong, Dong-Kyun;Mori, Masakazu
    • The Korean Journal of Pharmacology
    • /
    • v.25 no.1
    • /
    • pp.115-134
    • /
    • 1989
  • Combined effects of ganciclovir (GCV) and vidarabine (ara-A) on the replication, DNA synthesis, and gene expression of wild type-1 herpes simplex virus (HSV-1) and three acyclovir (ACV)-resistant HSV-1 mutants were studied. These mutants include a virus expressing no thymidine kinase $(ACV^r)$, a virus expressing thymidine kinase with altered substrate specificity $(IUdR^r)$, and a mutant expressing altered DNA polymerase $(PAA^r5)$. GCV, an agent activated by herpesvirus specific thymidine kinase, showed potent antiviral activity against the wild type HSV-1(KOS) and DNA polymerase mutant $(PAA^r5)$. The ACV-resistant mutants with thymidine kinase gene $(ACV^r\;and\;IUdR^r)$ were resistant to GCV. All tested wild type HSV-1 or ACV-resistant HSV-1 mutants did not display resistance to vidarabine (are-A). Combined GCV and ara-A showed potentiating synergistic antiviral activity against wild type KOS and $PAA^r5$, and showed subadditive combnined ativiral activity against thymidine kinase mutants. Combined GCV and ara-A more significantly inhibited the viral DNA synthesis in wild type KOS and $PAA^r5-infected$ cells to a greater extent than either agent alone, but the synergism was not determined in $ACV^r$ or $IUdR^r-infected$ cells. These data clearly indicate that combined GCV and ara-A therapy might be useful for the treatment of infections caused by wild type HSV-1 or ACV-resistant HSV-1 with DNA polymerase mutation. ACV-resistant viruses with the mutation in thymidine kinase gene are also, resistant to GCV, but susecptible to ara-A, indicating that ara-A would the drug of choice for the treatment of ACV-resistant HSV-1 which does not express thymidine kinase or expresses thymidine kinase with altered substrate specificity. While the synthesis of viral ${\alpha}-proteins$ of wild type HSV-1 was not affected by ACV, GCV, ara-A, or combined GCV and ara-A, the synthesis of ${\beta}-proteins$ was slightly but significantly increased at the later stage of viral infection by the antiviral agents. The synthesis of ${\gamma}-proteins$ of wild type HSV- 1 was significantly inhibited by ACV, GCV, ara-A, and combined GCV and ara-A. Combined GCV $(5-{\mu}M)$ and ara-A $(100-{\mu}M)$ also significantly altered the expression of viral ${\beta}-and$ ${\gamma}-proteins$, of which efffct was similar to that of GCV $(10-{\mu}M)$ alone. Although ACV at the concentration of $10-{\mu}M$ did not alter the expression of ${\alpha}-$, ${\beta}-$, and ${\gamma}-proteins$ of ACV-resistant $PAA^r5$, GCV and ara-A significantly alter the epression of ${\beta}-and$ ${\gamma}-proteins$, not ${\alpha}-protein$, as same manner as they altered the expression of those proteins in cells inffcted with wild type HSV-1. Combined GCV $(5-{\mu}M)$ and ara-A $(100-{\mu}M)$ altered the expression ${\beta}-and$ ${\gamma}-proteins$ in $PAA^r5$ infected cells, and the effect of combined regimen was comparable of that of GCV $(10-{\mu}M)$. These data indicate that the alteration in the expression of ${\beta}-and$ ${\gamma}-proteins$ in wild type HSV-1 or $PAA^r5$ infected cells could be more significantly affected by combined GCV and are-A than individual GCV or ara-A. In view of the fact that (a) viral ${\alpha}-$, ${\beta}-$, and ${\gamma}-proteins$ are synthesized in a cascade manner; (b) ${\beta}-proteins$ are essential for the synthesis of viral DNA; (c) the synthesis of ${\beta}-proteins$ are inhibited by ${\gamma}-proteins$; and (d) most ${\gamma}-proteins$ are made from the newly synthesized progeny virus, it is suggested that GCV and ara-A, alone or in combination, primarily inhibit the synthesis of viral DNA, and by doing so might exhibit their antiherpetic activity. The alteration in viral protein synthesis in the presence of tested antiviral agents could result from the alteration in viral DNA synthesis. From the present study, it can be concluded that (a) combined GCV and ara-A therapy would be beneficial for the control of inffctions caused by wild type HSV-1 or ACV-resistant DNA polymerase mutants; (b) the combined synergistic activity of GCV and ara-A is due to further decrease in the viral DNA by the combined regimen; (c) ara-A is the drug of choice for the infection caused by ACV-resistant HSV-1 with thymidine kinase mutation; and (d) the alteration in viral protein synthesis by GCV and ars-A, alone or in combination, is mostly due to the decreased synthesis of viral DAN.

  • PDF

Chronic progressive external ophthalmoplegia in a Saudi patient with a mutation in the POLG gene successfully managed with bilateral frontalis sling

  • Algahtani, Hussein;Shirah, Bader;Alsaggaf, Khalid;Al-Qahtani, Mohammad H.;Abdulkareem, Angham Abdulrahman;Naseer, Muhammad Imran;Abuzinadah, Ahmad R.
    • Journal of Genetic Medicine
    • /
    • v.18 no.2
    • /
    • pp.121-126
    • /
    • 2021
  • Chronic progressive external ophthalmoplegia (CPEO) is a complex slowly progressive mitochondrial disorder characterized by extraocular muscle weakness with or without multisystem involvement. The mainstay of therapy in a patient with CPEO is supportive. However, in moderate cases, surgery might be indicated including surgeries for ptosis and strabismus. In this article, we report a Saudi patient with CPEO due to compound heterozygous variants in the DNA polymerase gamma (POLG) gene c.2246T>C p.(Phe749Ser) and c.1735C>T p.(Arg579Trp), which are classified as pathogenic. Proper diagnosis with genetic testing confirmation is important to guide the management and counsel the patient about the prognosis and the management options. The patient was successfully managed with bilateral frontalis sling and illustrates the importance of surgical intervention to improve vision and cosmetic appearance in patients with CPEO. We emphasize the importance of multidisciplinary care in the management of cases of mitochondriopathy, especially CPEO.

Inactivation of Mad2B Enhances Apoptosis in Human Cervical Cancer Cell Line upon Cisplatin-Induced DNA Damage

  • Ju Hwan Kim;Hak Rim Kim;Rajnikant Patel
    • Biomolecules & Therapeutics
    • /
    • v.31 no.3
    • /
    • pp.340-349
    • /
    • 2023
  • Mad2B (Mad2L2), the human homolog of the yeast Rev7 protein, is a regulatory subunit of DNA polymerase ζ that shares sequence similarity with the mitotic checkpoint protein Mad2A. Previous studies on Mad2B have concluded that it is a mitotic checkpoint protein that functions by inhibiting the anaphase-promoting complex/cyclosome (APC/C). Here, we demonstrate that Mad2B is activated in response to cisplatin-induced DNA damage. Mad2B co-localizes at nuclear foci with DNA damage markers, such as proliferating cell nuclear antigen and gamma histone H2AX (γ-H2AX), following cisplatin-induced DNA damage. However, unlike Mad2A, the binding of Mad2B to Cdc20 does not inhibit the activity of APC/C in vitro. In contrast to Mad2A, Mad2B does not localize to kinetochores or binds to Cdc20 in spindle assembly checkpoint-activated cells. Loss of the Mad2B protein leads to damaged nuclei following cisplatin-induced DNA damage. Mad2B/Rev7 depletion causes the accumulation of damaged nuclei, thereby accelerating apoptosis in human cancer cells in response to cisplatin-induced DNA damage. Therefore, our results suggest that Mad2B may be a critical modulator of DNA damage response.

A Simple and ]Reliable Method for PCR-Based Analyses in Plant Species Containing High Amounts of Polyphenols (Polyphenol 고함유 식물의 간편 PCR 분석)

  • 유남희;백소현;윤성중
    • Korean Journal of Plant Resources
    • /
    • v.14 no.3
    • /
    • pp.235-240
    • /
    • 2001
  • Polymerase chain reaction (PCR) is used in a wide array of researches in plant molecular genetics and breeding. However, considerable time and cost are still required for the preparation of DNA suitable for reliable PCR results, especially in plant species containing high amounts of polyphenols. To reduce time and effort for PCR-based analysis, a simplified but reliable method was developed by a combinational employment of a simple and fast DNA extraction procedure and BLOTTO (Bovine Lacto Transfer Technique Optimizer) in reaction mixture. Genomic DNAs prepared by one-step extraction method from recalcitrant plant species such as Rubus coreanus, apple, grape and lettuce were successfully amplified by random primers in the reaction mixture containing 2 to 4% BLOTTO. Successful amplification of ${\gamma}$-TMT transgene in lettuce transformants by the specific primers was also achieved in the same condition, making rapid screening of positive transformants possible. Our results suggest that use of a simple DNA extraction procedure and incorporation of BLOTTO in reaction mixture in combination can reduce time and effort required for the analyses of a large number of germplasms and transformants by PCR-based techniques.

  • PDF

Mitochondrial myopathies caused by prolonged use of telbivudine

  • Lee, Jong-Mok;Shin, Jin-Hong;Park, Young-Eun;Kim, Dae-Seong
    • Annals of Clinical Neurophysiology
    • /
    • v.19 no.1
    • /
    • pp.40-45
    • /
    • 2017
  • Background: Telbivudine is a nucleoside analogue used for the treatment of chronic hepatitis B, but it often develops mitochondrial toxicity leading to symptomatic myopathy. In this study, three patients with telbivudine induced myopathy were enrolled in order to investigate the nature and pathogenesis of mitochondrial toxicity caused by long-term use of telbivudine. Methods: Clinical features, laboratory findings, muscle pathology, and quantitation of mitochondrial DNA were studied in three patients. Results: Patients presented with progressive muscle weakness with high serum creatine kinase levels. Light microscopic findings of muscle pathology showed ragged red fibers that reacted strongly with succinate dehydrogenase stain, but negative for cytochrome c oxidase activities. Electron microscopy revealed abnormal mitochondrial accumulation with rod shaped inclusions. The quantitative peroxidase chain reaction showed a depletion of mitochondrial DNA in skeletal muscle of the patients. Conclusions: Nucleoside analogues including telbivudine are potent inhibitors of viral DNA polymerases. However, they are not specific for viral DNA and can disturb mitochondrial replication at the same time. All nucleotide analogues should be used with close clinical observation in order to avoid development of mitochondrial myopathy.

Production and Secretion of Human Interleukin-18 in Transgenic Tobacco Cell Suspension Culture

  • Sharma, Niti;Kim, Tae-Geum;Yang, Moon-Sik
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.2
    • /
    • pp.154-159
    • /
    • 2006
  • Interleukin-18 (IL-18), otherwise known as interferon-gamma-inducing factor (IGIF), is one of several well characterized and important cytokines that contribute to host defenses. The complementary DNA (cDNA) of mature human interleukin-18 gene (hIL-18) was fused with the signal peptide of the rice amylase 1A gene (Ramy1A) and introduced into the plant expression vector under the control of a duplicated CaMV 35S promoter. The recombinant plasmid was transformed into tobacco (Nicotiana tabacum L. cv Havana) using the Agrobacterium-mediated transformation method. The integration of the hlL-18 gene into the genome of transgenic tobacco plants was confirmed by polymerase chain reaction (PCR) amplification and its expression was observed in the suspension cells that were derived from the transgenic plant callus by using Northern blot analysis. The hlL-18 protein was detected in the extracts of the transgenic callus and in the medium of the transgenic tobacco suspension culture by using immunoblot analysis. Based upon enzyme-linked immunosorbant assay (ELISA) results, the expression level of the hlL-18 protein approximated $166{\mu}g/L$ in the suspension culture medium. Bioassay results from the induction of $interferon-{\gamma}$ from a KG-1 cell line indicated that the hlL-18 secreted into the suspension culture medium was bioactive.