• Title/Summary/Keyword: DNA mobility

Search Result 133, Processing Time 0.022 seconds

BINDING OF LEAF NUCLEAR PROTEIN EXTRACTS TO LIGHT-RESPONSIVIE ELEMENTS OF cab PROMOTERS OF Arabidopsis thaliana

  • Lee, Hwa-Hyung;Park, Hee-Jin
    • Journal of Photoscience
    • /
    • v.3 no.2
    • /
    • pp.85-90
    • /
    • 1996
  • The binding ability of leaf nuclear extracts to the lighbresponsive elements (LREs) of cab promoters of Arabidopsis thaliana has been investigated. The cab promoters were fragmented with restr ction endonucleases into LRE that were identified by Mitra et al. [Plant Mol. Biol. 12, 169179 ( 1989)] and other small fragments. After end labeling with Klenow fragment, the fragments were assayed for binding with the leaf nuclear proteins that were prepared by solubilizing the purified nuclei with 0.5 M ammonium sulfate. The binding ability was assayed by mobility shift assay. To perform successful mobility shift assay, several factors affecting the interaction of protein with DNA were optimized before performing the assay. The LREs had several retardation bands. However, the other promoter fragments from the transcription start site to the far upstream region of the promoters had also retardation bands. No particular relationships could be found between the retardation band distributions and the loci of LRE. It is likely that the light-regulation of cab gene expression may be controlled by the multiple interactions of the regulatory protein factors with DNA motifs.

  • PDF

Importance of Nucleotides Adjacent to the Core Region of Diphtheria tox Promoter/Operator

  • Lee, John-Hwa
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.4
    • /
    • pp.622-627
    • /
    • 2002
  • Diphtheria toxin repressor (DtxR) binds to approximately 30 to 35-bp regions containing an interrupted 9-bp inverted repeat within a 19-bp core sequence. The core sequence is fairly conserved and critical for DtxR binding. The flanking regions that are consisted of 5 to 8 more of nucleotides from the core are also required for DtxR binding. The nucleotides in both flanking regions are A-T rich. To examine whether the A-T nucleotides in both flanking regions from the core have significant roles for DtxR binding, a DNA fragment was constructed based on the diphtheria tox promoter/operator, and DNA fragments with substitution of A and T nucleotides In the flanking regions to G and C were also constructed. To assess the effect of these substitutions on binding of DtxR and repressibility by DtxR, $\beta$-galactosidase activity from lacZ fused to the region was assessed. Gel mobility shift of the region by purified DtxR was also examined. The DNA fragments containing the mutations in the flanking regions still exhibited repression and mobility shift with DtxR. The core segment with the mutation is still, therefore, recognized by DtxR. Nonetheless, the results from the assays indicated that the substitution significantly decreased repression of the operator by DtxR in vivo under high-iron condition and decreased binding of DtxR to the operator. These results suggest that A and T nucleotides fur both flanking regions are preferred for the binding of DtxR.

Residence Time Distribution in the Chromatographic Column: Applications in the Separation Engineering of DNA

  • Park, Young G.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.2
    • /
    • pp.117-125
    • /
    • 2003
  • Experimental and theoretical works were performed for the separation of large polyelectrolyte, such as DNA, in a column packed with gel particles under the influence of an electric field. Since DNA quickly orient in the field direction through the pores, this paper presents how intraparticle convection affects the residence time distribution of DNAs in the column. The concept is further illustrated with examples from solid -liquid systems, for example, from chromatography Showing how the column efficiency is improved by the use of a n electric field. Dimensionless transient mass balance equations were derived, taking into consideration both diffusion and electrophoretic convection. The separation criteria are theoretically studied using two different Peclet numbers in the fluid and solid phases. These criteria were experimentally verified using two different DNAs via electrophoretic mobility measurements. which showed how the separation position of the DNAs varies in the column in relation to the Peg/Pef values of an individual DNA. The residence time distribution was solved by an operator theory and the characteristic method to yield the column response.

Functional Analysis of RAD4 Gene Required for Nucleotide Excision Repair of UV-induced DNA Damage in Saccharomyces cerevisiae

  • Park, Sang Dai;Park, In Soon
    • Animal cells and systems
    • /
    • v.6 no.4
    • /
    • pp.311-315
    • /
    • 2002
  • The RAD4 gene is essential for nucleotide excision repair in Saccharomyces cerevisiae. It has been known that the deduced amino acid sequence of Rad4 protein contains three DNA-dependent ATPase/helicase motifs. To determine the biochemical activities and functional role of RAD4 the Rad4 protein was expressed and purified. Immunoblot analysis showed a specific band of 21 kDa, which was well-matched with the size of open reading frame of the RAD4 gene. The purified Rad4 protein had no detectable helicase activity. However, the protein could interact with double stranded oligonucleotides, as judged by mobility shift assay. This result suggests that the Rad4 protein is a DNA binding protein.

Transcriptional regulation of soybean ${\beta}-conglycinin$ gene expression. -(I) Identification of a soybean embryo factor interacting with upstream region of soybean ${\beta}-conglycinin$ gene- (대두 ${\beta}-conglycinin$ 유전자 발현의 전사 조절에 관한 연구 -(I) 대두 ${\beta}-conglycinin$ 유전자의 upstream 영역에 결합하는 대두 배 인자의 동정-)

  • Lee, Jeong-Yeon;Chung, Dong-Hyo;Kim, Woo-Yeon
    • Applied Biological Chemistry
    • /
    • v.36 no.6
    • /
    • pp.547-552
    • /
    • 1993
  • Soybean nuclear extracts and S-100 were prepared to examine the soybean embryo factors which bind to the upstream region of soybean ${\beta}-conglycinin$ ${\alpha}'$ subunit gene. SEF3(soybean embryo factor 3), which is presumed to be a trans-acting factor for the expression of the gene, was detected in gel mobility shift assay using the DNA probe containing two AACCCA hexanucleotides. DNA probe containing CATGCAT or AACACA was used to find any other soybean embryo factor interacting with the upstream region of ${\beta}-Conglycinin$ ${\alpha}'$ subunit gene. It was found that there was no common DNA binding protein detected both in nuclear extracts and S-100. The relative levels of SEF3 binding activity both in nuclear extracts and S-100 of maturing soybean seeds were determined. SEF3 activity of nuclear extracts was first detected around 20 days after pollination and significantly increased around 32 days after pollination.

  • PDF

Cloning and Expression of Human Liver UDP-Glucuronosyltransferase cDNA, UDPGTh2

  • Dong, Misook;Owens, Ida-S.;Sheen, Yhun-Yhong
    • Archives of Pharmacal Research
    • /
    • v.20 no.5
    • /
    • pp.459-464
    • /
    • 1997
  • The human liver cDNA clone UDPGTh2, encoding a liver UDP-glucuronosyltransferase (UDPGT) was isolated from a .gamma. gt 11 cDNA library by hybridization to mouse transferase cDNA clone, UDPGTm1. UDPGTh2 encoded a 529 amino acid protein with an amino terminus membrane-insertion signal peptide and a carboxyl terminus membrane-spanning region. There were three potential asparagine-linked glycosylation sites at residues 67, 68, and 315. In order to obtain UDPGTh2 protein encoded from cloned human liver UDP-glucuronosyltransferase cDNA, the clone was inserted into the pSVL vector (pUDPGTh2) and expressed in COS 1 cells. The presence of a transferase with Mr-52,000 in transfected cells cultured in the presence of $[^{35}S]$ methionine was shown by immunocomplexed products with goat antimouse transferase IgG and protein A-Sepharose and analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. The expressed UDPGT was a glycoprotein as indicated by electrophoretic mobility shift in Mr-3,000-4,000 when expressed in the presence of tunicamycin. The extent of glycosylation was difficult to assess, although one could assume that glycosyl structures incorporated at the level of endoplasmic reticulum were always the core oligosaccharides. Thus, it is likely that at least two moieties inserted can account for the shift of Mr-3,000-4,000. This study demonstrates the cDNA and deduced amino acid sequence of human liver UDP-glucuronosyltransferase cDNA, UDPGTh2.

  • PDF

Protein Kinase A Increases DNA-Binding Activity of Testis-Brain RNA-Binding Protein

  • Ju, Hyun-Hee;Ghil, Sung-Ho
    • Biomedical Science Letters
    • /
    • v.14 no.2
    • /
    • pp.77-81
    • /
    • 2008
  • Testis brain RNA-binding protein (TB-RBP) is a DNA/RNA binding protein. TB-RBP is mainly expressed in testis and brain and highly conserved protein with several functions, including chromosomal translocations, DNA repair, mitotic cell division, and mRNA transport, stabilization, and storage. In our previous study, we identified TB-RBP as an interacting partner for the catalytic subunit $(C{\alpha})$ of protein kinase A(PKA) and verified their interaction with several biochemical analyses. Here, we confirmed interaction between $C{\alpha}$. and TB-RBP in mammalian cells and determined the effect of $C{\alpha}$. on the function of TB-RBP. The activation of $C{\alpha}$. increased the TB-RBP function as a DNA-binding protein. These results suggest that the function of TB-RBP can be modulated by PKA and provide insights into the diverse role of PKA.

  • PDF

DNA Light-strand Preferential Recognition of Human Mitochondria Transcription Termination Factor mTERF

  • Nam, Sang-Chul;Kang, Chang-Won
    • BMB Reports
    • /
    • v.38 no.6
    • /
    • pp.690-694
    • /
    • 2005
  • Transcription termination of the human mitochondrial genome requires specific binding to termination factor mTERF. In this study, mTERF was produced in E. coli and purified by two-step chromatography. mTERF-binding DNA sequences were isolated from a pool of randomized sequences by the repeated selection of bound sequences by gel-mobility shift assay and polymerase chain reaction. Sequencing and comparison of the 23 isolated clones revealed a 16-bp consensus sequence of 5'-GTG$\b{TGGC}$AGANCCNGG-3' in the light-strand (underlined residues were absolutely conserved), which nicely matched the genomic 13-bp terminator sequence 5'-$\b{TGGC}$AGAGCCCGG-3'. Moreover, mTERF binding assays of heteroduplex and single-stranded DNAs showed mTERF recognized the light strand in preference to the heavy strand. The preferential binding of mTERF with the light-strand may explain its distinct orientation-dependent termination activity.

Genetic Differentiation of Phytoplasma Isolates by DNA Heteroduplex Mobility Assay and Single-Strand Conformation Polymorphism Analysis

  • Cha, Byeongjin;Han, Sangsub
    • The Plant Pathology Journal
    • /
    • v.18 no.6
    • /
    • pp.308-312
    • /
    • 2002
  • Heteroduplex mobility assay (HMA) and single-strand conformation polymorphism (SSCP) analyses combined with PCR were developed for genetic differentiation of various phytoplasma isolates. In the HMA and SSCP analyses, differences in the mobility shifts and the SSCP band patterns identified three distinct types of phyto-plasmas: Type Ⅰ, jujube witches'-broom (JWB) and ligustrum witches'-broom (LiWB); Type Ⅱ, mulberry dwarf(MD) and sumac witches'-broom (SuWB); and Type Ⅲ, paulownia witches'-broom (PaWB). Results of the sequence analyses revealed that phytoplasmas of JWB and MD had 100% homology with LiWB and SuWB, respectively. On the other hand, PaWB phyto-plasma had 97.8% homology with MD phytoplasma. The PCR-HMA and SSCP techniques were very useful in determining variations in sequence among several isolates of phytoplasmas. Furthermore, the methods were rapid, economical, highly sensitive, and easy to handle with the gels.

Electrical transport characteristics of deoxyribonucleic acid conjugated graphene field-effect transistors

  • Hwang, J.S.;Kim, H.T.;Lee, J.H.;Whang, D.;Hwang, S.W.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.482-483
    • /
    • 2011
  • Graphene is a good candidate for the future nano-electronic materials because it has excellent conductivity, mobility, transparency, flexibility and others. Until now, most graphene researches are focused on the nano electronic device applications, however, biological application of graphene has been relatively less reported. We have fabricated a deoxyribonucleic acid (DNA) conjugated graphene field-effect transistor (FET) and measured the electrical transport characteristics. We have used graphene sheets grown on Ni substrates by chemical vapour deposition. The Raman spectra of graphene sheets indicate high quality and only a few number of layers. The synthesized graphene is transferred on top of the substrate with pre-patterned electrodes by the floating-and-scooping method [1]. Then we applied adhesive tapes on the surface of the graphene to define graphene flakes of a few micron sizes near the electrodes. The current-voltage characteristic of the graphene layer before stripping shows linear zero gate bias conductance and no gate operation. After stripping, the zero gate bias conductance of the device is reduced and clear gate operation is observed. The change of FET characteristics before and after stripping is due to the formation of a micron size graphene flake. After combined with 30 base pairs single-stranded poly(dT) DNA molecules, the conductance and gate operation of the graphene flake FETs become slightly smaller than that of the pristine ones. It is considered that DNA is to be stably binding to the graphene layer due to the ${\pi}-{\pi}$ stacking interaction between nucleic bases and the surface of graphene. And this binding can modulate the electrical transport properties of graphene FETs. We also calculate the field-effect mobility of pristine and DNA conjugated graphene FET devices.

  • PDF