• Title/Summary/Keyword: DNA microarray analysis

Search Result 395, Processing Time 0.031 seconds

Laser Captured Microdissection

  • 이경아
    • The Zoological Society Korea : Newsletter
    • /
    • v.18 no.2
    • /
    • pp.21-25
    • /
    • 2001
  • 대부분의 조직은 여러 가지 세포가 모여서 이루어지기 때문에 그 중의 어떤 특정세포에서 발현하는 물질을 분석하려면 조직을 이루고 있는 각각의 세포를 분리해내야 한다. 이렇게 순수하게 세포를 분리해내는 기술 중의 하나가 Laser Captured Microdissection (LCM)이 다. LCM의 개발로 기존에 사용되던 방법에 비하여 빠르고 간편하면서, 매우 정확하게 원하는 세포를 순수 분리해서 그 세포의 분자생물학적 또는 생화학적인 분석을 할 수 있게 되었다. LCM은 현미경으로 조직절편을 관찰하면서 원하는 세포를 낮은 에너지의 laser를 사용하여 도려내는 방법으로 조직절편 이외에도 도말된 혈액이나 자궁경부 조직, 그리고 배양된 세포를 cytocentrifugation한 후에 원하는 세포를 포획 할 수도 있다. LCM을 이용한 연구는 여러 분야에서 다양하게 진행되고 있으며, 특히 같은 조직 내에 존재하는 정상세포와 전이중인 세포, 그리고 암세포를 구분해 냄으로써 암의 전이기전 및 병인 연구에 매우 큰 공헌을 하고 있다. 이렇게 분리된 세포는 RT-PCR, LOH (loss of heterozygosity), microsatellite instability, differential gene profiling, cDNA microarray, Western blot, 2D PAGE protein analysis 등의 기법을 접목하여 연구하게 된다. 본 논단을 통하여 1996년 개발된 LCM의 원리와 이제까지 LCM을 이용한 연구 성과를 살펴보고자 한다.

  • PDF

Effects of Gleditsia spina (GS) water extract on Gene Expression of Human Melanoma cells, by using Microarry technique (DNA chip을 이용한 조각자 추출물의 인간유래 악성 종양에 미치는 영향)

  • Park, Yong-Ho;Kim, Jong-Han;Park, Su-Yeon;Choi, Jeong-Hwa
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.21 no.1
    • /
    • pp.55-69
    • /
    • 2008
  • Objective : This study was designed to investigated effects of Gleditsia spina (GS) on human derived melanoma cells Methods : The genetic profile for the effect of medicine on human derived melanoma cells of SK-MEL-2, was measured by using microarray technique, and the functional analysis on these genes was conducted. The network of total protein interactions was measured by using cytoscape program. Results : Total 253 genes were up-regulated and 439 genes down-regulated in cells treated with GS. Genes induced or suppressed by GS were all mainly concerned with metabolic process, regulation of biological process and protein binding. Conclusion : Suggest the possibility of GS as anti-cancer drug and cosmetic agent, and also suggest that related mechanisms are involved in regulation of intra-cellular metabolism in melanoma cells.

  • PDF

Gene Selection using Principal Component Analysis for Molecular classification (Principal Component Analysis를 이용한 Gene Selection)

  • Lim Soo-Hong;Sohn Kirack;Hong Sung-Yong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.259-261
    • /
    • 2005
  • 수천개의 Gene Expression Measurement를 생성해 내는 DNA Microarray 연구는 조직과 세포의 표본으로부터 진단에 유용한 Gene Expression 정보를 모으게 된다. 이런 종류의 Data를 분석하기 위하여 SVM(Support Vector Machine)을 사용한 새로운 방법이 연구되어왔다. 본 논문에서는 Gene Expression Data에 대한 고유벡터(Eigen Vector)를 이용하여 SVM의 성능을 향상시키고 질병진단에 유용한 Gene을 찾아 내는 알고리즘을 기술한다. 고유벡터를 통하여 Gene을 선택적으로 SVM Learning에 참가 시키고 분류의 결과를 통하여 추가된 Gene이 질병 진단에 미치는 영향력을 알아냄으로써 질병에 대한 Gene 역할을 파악 하는데 활용할 수 있다.

  • PDF

Genetic Architecture of Transcription and Chromatin Regulation

  • Kim, Kwoneel;Bang, Hyoeun;Lee, Kibaick;Choi, Jung Kyoon
    • Genomics & Informatics
    • /
    • v.13 no.2
    • /
    • pp.40-44
    • /
    • 2015
  • DNA microarray and next-generation sequencing provide data that can be used for the genetic analysis of multiple quantitative traits such as gene expression levels, transcription factor binding profiles, and epigenetic signatures. In particular, chromatin opening is tightly coupled with gene transcription. To understand how these two processes are genetically regulated and associated with each other, we examined the changes of chromatin accessibility and gene expression in response to genetic variation by means of quantitative trait loci mapping. Regulatory patterns commonly observed in yeast and human across different technical platforms and experimental designs suggest a higher genetic complexity of transcription regulation in contrast to a more robust genetic architecture of chromatin regulation.

Insights into the signal transduction pathways of mouse lung type II cells revealed by transcription factor profiling in the transcriptome

  • Ramana, Chilakamarti V.
    • Genomics & Informatics
    • /
    • v.17 no.1
    • /
    • pp.8.1-8.10
    • /
    • 2019
  • Alveolar type II cells constitute a small fraction of the total lung cell mass. However, they play an important role in many cellular processes including trans-differentiation into type I cells as well as repair of lung injury in response to toxic chemicals and respiratory pathogens. Transcription factors are the regulatory proteins dynamically modulating DNA structure and gene expression. Transcription factor profiling in microarray datasets revealed that several members of AP1, ATF, $NF-{\kappa}B$, and C/EBP families involved in diverse responses were expressed in mouse lung type II cells. A transcriptional factor signature consisting of Cebpa, Srebf1, Stat3, Klf5, and Elf3 was identified in lung type II cells, Sox9+ pluripotent lung stem cells as well as in mouse lung development. Identification of the transcription factor profile in mouse lung type II cells will serve as a useful resource and facilitate the integrated analysis of signal transduction pathways and specific gene targets in a variety of physiological conditions.

Similarity of Gene Expression Profiles in Primary Brain Tumors with the Toxic Mechanism by Environmental Contaminants

  • Kim, Yu-Ri;Kim, Ki-Nam;Park, Yoon-Hee;Ryu, Yeon-Mi;Sohn, Sung-Hwa;Seo, Sang-Hui;Lee, Seung-Ho;Kim, Hye-Won;Lee, Kweon-Haeng;Kim, Meyoung-Kon
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.3
    • /
    • pp.209-215
    • /
    • 2005
  • Recently, a large number of clinical experiments have shown that exposure of organic pollutants lead to various cancers through the abnormal cell growth. Environmental pollutants, such as 2, 3, 7, 8-Tetrachloro dibenzo-p-dioxin (TCDD) and polycyclic aromatic hydrocarbons (PAHs), are carcinogen and are known to cause the cognitive disability and motor dysfunction in the developing of brain. The effects of these pollutants on neurodevelopmental disorder is well established, but the underlying mechanism(s) and similarity of gene expression profiles in human brain tumors with organic pollutants still remain unclear. In this study, we first examined the gene expression profiles in glioblastomas compared with meningioma that are kinds of primary human brain tumor by using human cDNA microarray. The results of cDNA microarray analysis revealed that 26 genes were upregulated (Z-ratio>2.0) and 14 genes were downregulated (Z-ratio<-2.0) in glioblastoma compared with meningioma. From the altered gene patterns, mitogen-activated protein kinase (MAPK) signaling related genes, such as MAP2K3, MAP3K11 and jun activated domain binding protein, and transcription factors, such as UTF2 and TF12, were upregulated in glioblastoma. Also, we tried to investigate the relation between important genes up- and down-regulated in giloblastoma and various organic pollutants. Therefore, the identification of changes in the patterns of gene expression may provide a better understanding of the molecular mechanisms involved in human primary brain tumors and of the relation between gene expression profiles and organic pollutants in brain tissue.

Study on the Anti-HT-29 Human Colon Cancer Activity of $\beta$-Glucans and Their Enzymatically Hydrolyzed Oligosaccharides from Agalicus blazei Murill (아가리쿠스로부터 분리한 $\beta$-glucan과 그 올리고당류의 HT-29 인체 대장암 세포에 대한 항암 활성에 관한 연구)

  • Lee, Mi-Young;Kim, Ki-Hoon;Kim, Yea-Woon;Chang, Hun-Gil;Lee, Dong-Seok
    • Korean Journal of Microbiology
    • /
    • v.42 no.4
    • /
    • pp.319-325
    • /
    • 2006
  • [ $\beta$ ]-Glucans (AG) were prepared from Agaricus blazei cultured in the medium fortified with the roots of Pueraria spp. by repeated extraction with hot water, gel filtration chromatography and DEAE ion exchange chromatography. Oligosaccharides (AO) were derived from the hydrolysis of AG by an endo-$\beta$-(1$\rightarrow$6)-glucanase from Bacillus megaterium. The anti-HT-29 human colon cancer activity of AG or AO was investigated using MTT assay, apoptosis assay, cell cycle analysis, and cDNA microairay. AG and AO both inhibited proliferation and growth of HT-29 cells, and stimulated apoptosis of the cells in a dose-dependent manner. In cell cycle analysis, treating HT-29 cells with AG or AO resulted in the increase of cells in the G0 (sub-G1) and G1 phase. Especially, AO was more effective in inducing G0/G1 cell cycle arrest than AG. To screen the genes involved in the increase of apoptosis, the gene expression profile of the HT-29 cells treated with AO was examined by cDNA microarray. While several genes involved in cell cycle progression (CCND2 and CDK2) were down-regulated, many genes involved in apoptosis (TNFSF9, TNFRSF9, FADD, CASP8, BAD, CRADD, CASP9 etc), cell cycle inhibitor (CDKN2A), immune response (IL6, IL18, IL6R etc), and tumor suppressor (CEACAM1, TP53BP2, IRF1, and PHB) were up-regulated. These results suggest that AO could inhibit the proliferation and growth of HT-29 cells by G0/G1 cell cycle arrest and induction of apoptosis.

Immune Gene Discovery by Expressed Sequence Tags Generated from Olive Flounder (Paralichthys olivaceus) Kidney (넙치 (Paralichthys olivaceus) 신장에서 생성된 ESTs (Expressed Sequence Tags)로부터 면역관련 유전자의 탐색)

  • Lee, Jeong-Ho;Kim, Young-Ok;Kim, Jong-Hyun;Noh, Jae Koo;Kim, Hyun Chul;Kim, Kyung-Kil;Kim, Kyu-Won
    • Korean Journal of Ichthyology
    • /
    • v.18 no.4
    • /
    • pp.283-292
    • /
    • 2006
  • Expressed sequence tag (EST) analysis was conducted using a complementary DNA (cDNA) library made from the kidney mRNA of olive flounder (Paralichthys olivaceus). In the survey of 390 ESTs chosen from the kidney cDNA library, 250 ESTs showed significant homology to previously described genes while 140 ESTs were unidentified or novel. Comparative analysis of the 250 identified ESTs showed that 14 (5.6%) clones were representing 11 unique genes identified as homologous to the previously reported olive flounder ESTs, 198 (79.2%) clones representing 160 unique genes were identified as orthologs of known genes from other organisms, and orthologs were established for 38 (15.2%) clones representing 37 genes of known sequences with unknown functions. We also identified several kinds of immune associated proteins, indicating EST as a powerful method for identifying immunerelated genes of fish as well as identifying novel genes. Further studies using cDNA microarrays are needed to identify the differentially expressed transcripts after disease infection.

Discovery of Cellular RhoA Functions by the Integrated Application of Gene Set Enrichment Analysis

  • Chun, Kwang-Hoon
    • Biomolecules & Therapeutics
    • /
    • v.30 no.1
    • /
    • pp.98-116
    • /
    • 2022
  • The small GTPase RhoA has been studied extensively for its role in actin dynamics. In this study, multiple bioinformatics tools were applied cooperatively to the microarray dataset GSE64714 to explore previously unidentified functions of RhoA. Comparative gene expression analysis revealed 545 differentially expressed genes in RhoA-null cells versus controls. Gene set enrichment analysis (GSEA) was conducted with three gene set collections: (1) the hallmark, (2) the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and (3) the Gene Ontology Biological Process. GSEA results showed that RhoA is related strongly to diverse pathways: cell cycle/growth, DNA repair, metabolism, keratinization, response to fungus, and vesicular transport. These functions were verified by heatmap analysis, KEGG pathway diagramming, and direct acyclic graphing. The use of multiple gene set collections restricted the leakage of information extracted. However, gene sets from individual collections are heterogenous in gene element composition, number, and the contextual meaning embraced in names. Indeed, there was a limit to deriving functions with high accuracy and reliability simply from gene set names. The comparison of multiple gene set collections showed that although the gene sets had similar names, the gene elements were extremely heterogeneous. Thus, the type of collection chosen and the analytical context influence the interpretation of GSEA results. Nonetheless, the analyses of multiple collections made it possible to derive robust and consistent function identifications. This study confirmed several well-described roles of RhoA and revealed less explored functions, suggesting future research directions.

Effects of 5-azacytidine, a DNA methylation inhibitor, on embryogenic callus formation and shoot regeneration from rice mature seeds (벼 성숙종자로부터 배상체 캘러스 형성 및 식물체 재분화에 DNA methylation 억제제인 5-azacytidine의 영향)

  • Lee, Yeon-Hee;Lee, Jung-Sook;Kim, Soo-Yun;Sohn, Seong-Han;Kim, Dool-Yi;Yoon, In-Sun;Kweon, Soon-Jong;Suh, Seok-Chul
    • Journal of Plant Biotechnology
    • /
    • v.35 no.2
    • /
    • pp.133-140
    • /
    • 2008
  • The modification of DNA and histone plays an important role for gene expression in plant development. The objective of this research is to observe the effects of methylation on the gene expression during dedifferentiation from rice mature seeds to callus and differentiation from callus to shoots. The embryogenic callus with ability to shoot regeneration was not induced on the N6A medium supplemented with 5-azacytidine and abnormal callus with brown color was formed. When the normal rice callus was placed on the regeneration MSRA medium supplemented with 5-azacytidine, the shoot regeneration was inhibited. The results showed that 5-azacytidine, DNA demethylating agent, had negative effects on normal embryogenic callus formation and shoot regeneration. This suggested that DNA methylation of some genes was required for normal cell dedifferentiation and differentiation in tissue culture. The microarray and $GeneFishig^{TM}$ DEG screening were used to observe the gene transcript profile in callus induction and regeneration on N6A (N6 medium + 5-azaC) and MSRA (MS regeneration medium + 5-azaC). Subsets of genes were up-regulated or down-regulated in response to 5-azaC treatments. The genes related with epigenetic regulation, electron transport, nucleic acid metabolism and response to stress were up and down regulated. The different expression of some genes (germin like protein etc.) during callus induction and shoot regeneration was confirmed using RT-PCR and northern blot analysis.