• Title/Summary/Keyword: DNA microarray

Search Result 694, Processing Time 0.023 seconds

A Report on the Inter-Gene Correlations in cDNA Microarray Data Sets (cDNA 마이크로어레이에서 유전자간 상관 관계에 대한 보고)

  • Kim, Byung-Soo;Jang, Jee-Sun;Kim, Sang-Cheol;Lim, Jo-Han
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.3
    • /
    • pp.617-626
    • /
    • 2009
  • A series of recent papers reported that the inter-gene correlations in Affymetrix microarray data sets were strong and long-ranged, and the assumption of independence or weak dependence among gene expression signals which was often employed without justification was in conflict with actual data. Qui et al. (2005) indicated that applying the nonparametric empirical Bayes method in which test statistics were pooled across genes for performing the statistical inference resulted in the large variance of the number of differentially expressed genes. Qui et al. (2005) attributed this effect to strong and long-ranged inter-gene correlations. Klebanov and Yakovlev (2007) demonstrated that the inter-gene correlations provided a rich source of information rather than being a nuisance in the statistical analysis and they developed, by transforming the original gene expression sequence, a sequence of independent random variables which they referred to as a ${\delta}$-sequence. We note in this report using two cDNA microarray data sets experimented in this country that the strong and long-ranged inter-gene correlations were still valid in cDNA microarray data and also the ${\delta}$-sequence of independence could be derived from the cDNA microarray data. This note suggests that the inter-gene correlations be considered in the future analysis of the cDNA microarray data sets.

The Antioxidant Effect, Inhibition of Interleukin-4 and the Effect on the Gene Expression by Using cDNA Chip of Chungsangboha-tang(Qingshangbuxia-tang) (청상보하탕의 항산화 효과, Interleukin-4 억제 및 cDNA chip을 이용한 유전자발현에 미치는 영향)

  • 이동생;정희재;정승기;이형구
    • The Journal of Korean Medicine
    • /
    • v.24 no.2
    • /
    • pp.148-158
    • /
    • 2003
  • Backgrounds & Objectives: In many recent studies, molecular biological methods have been used to investigate the role of cytokines in pathogenesis and new therapeutic targets of asthma. Recently, as a method of research on the gene expression, they are applying another method which assays multiple gene expressions at the same time by the microarray. In this study, the antioxidant effect, the inhibitory effect against interleukin-4 and the effect on the CD/cytokine gene expression in PBMC (peripheral blood mononuclear cells) was evaluated by using cDNA microarray chip of Chungsangboha-tang. Methods: Experimental studies were performed for the antioxidant effect of Chungsangboha-tang on DPPH (1, 1-diphenyl-2-picrylhydrazyl) solution, for the IL-4-inhibiting effect on BALB/c mouse spleen, and for the gene expression effect on PBMC (peripheral blood mononuclear cells) with microarray. Results: Chungsangboha-tang showed antioxidant effect dose-dependently. Chungsangboha-tang inhibited interleukin-4 dose-dependently and showed significant difference in 10ug/ml and 100ug/ml of test groups. There was no 2 more times upregulated genes than in the control group by using cDNA microarray chip of Chungsangbohn-tang, but there were 140%-200% upregulated genes. There was no 2 more times downregulated genes than in the control group by using cDNA microarray chip of Chungsangboha-Tang, but there was 50%-75% downregulated genes. Conclusions: This study showed that Chungsangboha-tang has an antioxidant effect and inhibition of Interleukin-4, but further studies are necessary with microarray.

  • PDF

Effects of Dioxin Exposed in Human by Using Radioactive cDNA Microarray

  • Ryu, Yeon-Mi;Kim, Ki-Nam;Kim, Hye-Won;Sohn, Sung-Hwa;Lee, Seung-Ho;Kim, Yu-Ri;Seo, Sang-Hui;Lee, Seung-Min;Lee, Eun-Il;Kim, Meyoung-Kon
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.1
    • /
    • pp.35-47
    • /
    • 2006
  • 2, 3, 7, 8-Tetrachlorodibenzo-p-dioxin (TCDD) are well known as the most toxic environmental compound in these days. Many researches are reported that dioxin produces multiple toxic effects, such as endocrine toxicity, reproductive toxicity, immunotoxicity and cancer. In this study, we carried to discover novel evidence for previously unknown gene expression patterns in human exposed to dioxin by using radioactive cDNA microarray. 548 workers who were divided into experimental and control groups according to their urinary Naphthol levels were enrolled in our study. Blood mRNA in human was isolated, and the gene expression profiles were analyzed by cDNA microarray. Gene expression analysis identified 52 genes which exhibited a significant change. In our study, most notably, genes involved in cell cycle, cell proliferation, signal transduction and apoptosis in human exposed to dioxin, such as CCND3, TSHR, and EFRN5, were up-regulated. In the current study, we observed gene expression of people that are exposed to dioxin using radioactive cDNA microarray. Through these results, we suggest when objects are exposed to toxic compounds, such as dioxin, the radioactive cDNA microarray may be using in sensitively detecting of cancerous change.

Identification of Biomarkers for Radiation Response Using cDNA Microarray

  • Park, Woong-Yang
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2001.10a
    • /
    • pp.29-44
    • /
    • 2001
  • DNA damage by physical insult including UV and g-radiation might provoke genetic alterations in cells, which is followed by either acute cell death or tumorigenesis. The responsiveness to g-radiation depends on cellular context of target cells. To understand the mechanisms of checkpoint control, repair and cell death following genotoxic stimu]i, cDNA microarray can provide the gene expression profile. To make a profile of gene expression in irradiated Jurkat T cells, we hybridized the cDNA microarray using cDNA from g-irradiated Jurkat T cells. Jurkat T cells were exposed to 4Gy to 16Gy, and total RNA were extracted at 4 to 24 hrs after irradiation. The hybridization of the microarray to fluorescence-labeled cDNA from treated and untreated cells was analyzed by bioinformatic analysis to address relative changes in expression levels of the genes present in the array. Responses varied widely in different time points, suggesting acute stress response and chronic restoration or cell death. From these results we could select 384 genes related to radiation response in Tcells, and radiation response might be different in various types of cells. Using Radchip, we could separate "the exposed" from control PBMCs. We propose that Radchip might be useful to check the radiation research as well as radiation carcinogenesis.

  • PDF

Expression Profiles of Streptomyces Doxorubicin Biosynthetic Gene Cluster Using DNA Microarray System (DNA Microarray 시스템을 이용한 방선균 독소루비신 생합성 유전자군의 발현패턴 분석)

  • Kang Seung-Hoon;Kim Myung-Gun;Park Hyun-Joo;Kim Eung-Soo
    • KSBB Journal
    • /
    • v.20 no.3
    • /
    • pp.220-227
    • /
    • 2005
  • Doxorubicin is an anthracycline-family polyketide compound with a very potent anti-cancer activity, typically produced by Streptomyces peucetius. To understand the potential target biosynthetic genes critical for the doxorubicin everproduction, a doxorubicin-specific DNA microarray chip was fabricated and applied to reveal the growth-phase-dependent expression profiles of biosynthetic genes from two doxorubicin-overproducing strains along with the wild-type strain. Two doxorubicin-overproducing 5. peucetius strains were generated via over-expression of a dnrl (a doxorubicin-specific positive regulatory gene) and a doxA (a gene involved in the conversion from daunorubicin to doxorubicin) using a streptomycetes high expression vector containing a strong ermE promoter. Each doxorubicin-overproducing strain was quantitatively compared with the wild-type doxorubicin producer based on the growth-phase-dependent doxorubicin productivity as well as doxorubicin biosynthetic gene expression profiles. The doxorubicin-specific DNA microarray chip data revealed the early-and-steady expressions of the doxorubicin-specific regulatory gene (dnrl), the doxorubicin resistance genes (drrA, drrB, drrC), and the doxorubicin deoxysugar biosynthetic gene (dnmL) are critical for the doxorubicin overproduction in S. peucetius. These results provide that the relationship between the growth-phase-dependent doxorubicin productivity and the doxorubicin biosynthetic gene expression profiles should lead us a rational design of molecular genetic strain improvement strategy.

Gene Expression study of human chromosomal aneuploid

  • Lee Su-Man
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2006.02a
    • /
    • pp.98-107
    • /
    • 2006
  • Chromosomal copy number changes (aneuploidies) are common in human populations. The extra chromosome can affect gene expression by whole-genome level. By gene expression microarray analysis, we want to find aberrant gene expression due to aneuploidies in Klinefelter (+X) and Down syndrome (+21). We have analyzed the inactivation status of X-linked genes in Klinefelter Syndrome (KS) by using X-linked cDNA microarray and cSNP analysis. We analyzed the expression of 190 X-linked genes by cDNA microarray from the lymphocytes of five KS patients and five females (XX) with normal males (XY) controls. cDNA microarray experiments and cSNP analysis showed the differentially expressed genes were similar between KS and XX cases. To analyze the differential gene expressions in Down Syndrome (DS), Amniotic Fluid (AF)cells were collected from 12 pregnancies at $16{\sim}18$ weeks of gestation in DS (n=6) and normal (n=6) subjects. We also analysis AF cells for a DNA microarray system and compared the chip data with two dimensional protein gel analysis of amniotic fluid. Our data may provide the basis for a more systematic identification of biological markers of fetal DS, thus leading to an improved understanding of pathogenesis for fetal DS.

  • PDF

Development of a Single Nucleotide Polymorphism DNA Microarray for the Detection and Genotyping of the SARS Coronavirus

  • Guo, Xi;Geng, Peng;Wang, Quan;Cao, Boyang;Liu, Bin
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.10
    • /
    • pp.1445-1454
    • /
    • 2014
  • Severe acute respiratory syndrome (SARS), a disease that spread widely in the world during late 2002 to 2004, severely threatened public health. Although there have been no reported infections since 2004, the extremely pathogenic SARS coronavirus (SARS-CoV), as the causative agent of SARS, has recently been identified in animals, showing the potential for the re-emergence of this disease. Previous studies showed that 27 single nucleotide polymorphism (SNP) mutations among the spike (S) gene of this virus are correlated closely with the SARS pathogenicity and epidemicity. We have developed a SNP DNA microarray in order to detect and genotype these SNPs, and to obtain related information on the pathogenicity and epidemicity of a given strain. The microarray was hybridized with PCR products amplified from cDNAs obtained from different SARS-CoV strains. We were able to detect 24 SNPs and determine the type of a given strain. The hybridization profile showed that 19 samples were detected and genotyped correctly by using our microarray, with 100% accuracy. Our microarray provides a novel method for the detection and epidemiological surveillance of SARS-CoV.

Poor Correlation Between the New Statistical and the Old Empirical Algorithms for DNA Microarray Analysis

  • Kim, Ju Han;Kuo, Winston P.;Kong, Sek-Won;Ohno-Machado, Lucila;Kohane, Isaac S.
    • Genomics & Informatics
    • /
    • v.1 no.2
    • /
    • pp.87-93
    • /
    • 2003
  • DNA microarray is currently the most prominent tool for investigating large-scale gene expression data. Different algorithms for measuring gene expression levels from scanned images of microarray experiments may significantly impact the following steps of functional genomic analyses. $Affymetrix^{(R)}$ recently introduced high-density microarrays and new statistical algorithms in Microarray Suit (MAS) version 5.0$^{(R)}$. Very high correlations (0.92 - 0.97) between the new algorithms and the old algorithms (MAS 4.0) across several species and conditions were reported. We found that the column-wise array correlations had a tendency to be much higher than the row-wise gene correlations, which may be much more meaningful in the following higher-order data analyses including clustering and pattern analyses. In this paper, not only the detailed comparison of the two sets of algorithms is illustrated, but the impact of the introducing new algorithms on the further clustering analysis of microarray data and of possible pitfalls in mixing the old and the new algorithms were also described.

Toxicogenomic analysis of Effects of Bisphenol A on Japanese Medaka fish using high density-functional cDNA microarray

  • Jiho Min;Park, Kyeong-Seo;Hong, Han-Na;Gu, Man-Bock
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.10a
    • /
    • pp.173-173
    • /
    • 2003
  • With the introduction of DNA microarrays, a high throughput analysis of gene expression is now possible as a replacement to the traditional time-consuming Southern-blot analysis. This cDNA microarray should be ahighly favored technology in the area of molecular toxicology or analysis of environmental stresses.In this study, therefore, we developed a novel cDNA microarray for analyzing stress-specific responses in japanese Medaka fish. In the design and fabrication of this stress specific functional cDNA microarray, 123 different genes in Medaka fish were selected from eighteen different stress responsive groups and spotted on a 25${\times}$75 mm glass surface. After exposure of the fish to bisphenol A which is the one of the well-known endocrine disrupting chemicals (EDCs), over 1 or 10 days, the responses of the DNA chip were found to show distinct expression patterns according to the mode of toxic actions from environmental toxicants. As a results, they showed specific gene expression pattern to bisphenol A, additionally, the chemical spesific biomarkers could be suggested based on the chip analysis data. Therefore, this chip can be used to monitor stress responses of unknown and/or known toxic chemicals using Medaka fish and may be used for the further development of biomarkers by utilizing the gene expression patterns for known contaminants.

  • PDF

Comparison of Hybridization Behavior between Double and Single Strand of Targets and the Application of Asymmetric PCR Targets in cDNA Microarray

  • Wei, Qing;Liu, Sanzhen;Huang, Jianfeng;Mao, Xueying;Chu, Xiaohui;Wang, Yu;Qiu, Minyan;Mao, Yumin;Xie, Yi;Li, Yao
    • BMB Reports
    • /
    • v.37 no.4
    • /
    • pp.439-444
    • /
    • 2004
  • Double stranded targets on the cDNA microarray contain representatives of both the coding and noncoding strands, which will introduce hybridization competition with probes. Here, the effect of double and single strands of targets on the signal intensity and the ratios of Cy5/Cy3 within the same slide were compared. The results show that single stranded targets can increase the hybridization efficiency without changing the Cy5/Cy3 ratio. Based on these results, a new strategy was established by generating cDNA targets with asymmetric PCR, instead of conventional PCR, to increase the sensitivity of the cDNA microarray. Furthermore, the feasibility of this approach was validated. The results indicate that the cDNA microarray system based on asymmetric PCR is more sensitive, with no decrease in the reliability and reproducibility as compared with that based on conventional symmetric PCR.