• Title/Summary/Keyword: DNA interstrand cross-link (ICL) repair

Search Result 2, Processing Time 0.019 seconds

Involvement of Brca1 in DNA Interstrand Cross-link Repair Through Homologous Recombination-independent Process (재조합 비의존적 경로를 통한 DNA 사슬간 교차결합 복구에의 Brca1단백질의 기능)

  • Yun, Jean-Ho
    • Journal of Life Science
    • /
    • v.15 no.4 s.71
    • /
    • pp.542-547
    • /
    • 2005
  • Hypersensitivity of cells lacking Brcal to DNA interstrand .ross-link (ICL) agents such as cisplatin and mitomycin C(MMC) implicates the important role of Brcal in cellular response following ICL treatment. Brca1 plays an essential role in DNA double-strand break (DSB) repair through homologous recombination (HR)-dependent and -independent process. Recently, our group has been reported that Brca1 involves in cellular ICL response through HR-dependent repair process (Yun J. et at., Oncogene 2005). In this report, the involvement of Brca1 protein in HR-independent repair process is examined using isogenic $p53^{-/-}\;and\;p53^{-/-}\;Brcal^{-/-}$ mouse embryonic fibroblast (MEF) and psoralen cross-linked reporter reactivation assay. Brcal-deficient MEFs showed significantly low HR-independent repair activity compare to Brca1-proficient MEFs. Hypersensitivity to MMC and ICL reporter repair activity were restored by the reconstitution of Brca1 expression. Interestingly, MEFs expressing exon 11-deleted isoform of Brca1 $(Brca1^{\Delta11/\Delta11})$ showed high resistance to MMC and ICL reporter repair activity comparable to Brca1-reconstituted MEFs. Taken together, these results suggest that Brca1 involves in ICL repair through not only HR-dependent process but also HR-independent process using N-terminal RINC finger domain or C-terminal BRCT domain rather than exon 11 region which mediate interaction with Rad50.

Exploiting the Fanconi Anemia Pathway for Targeted Anti-Cancer Therapy

  • Jo, Ukhyun;Kim, Hyungjin
    • Molecules and Cells
    • /
    • v.38 no.8
    • /
    • pp.669-676
    • /
    • 2015
  • Genome instability, primarily caused by faulty DNA repair mechanisms, drives tumorigenesis. Therapeutic interventions that exploit deregulated DNA repair in cancer have made considerable progress by targeting tumor-specific alterations of DNA repair factors, which either induces synthetic lethality or augments the efficacy of conventional chemotherapy and radiotherapy. The study of Fanconianemia (FA), a rare inherited blood disorder and cancer predisposition syndrome, has been instrumental in understanding the extent to which DNA repair defects contribute to tumorigenesis. The FA pathway functions to resolve blocked replication forks in response to DNA interstrand cross-links (ICLs), and accumulating knowledge of its activation by the ubiquitin-mediated signaling pathway has provided promising therapeutic opportunities for cancer treatment. Here, we discuss recent advances in our understanding of FA pathway regulation and its potential application for designing tailored therapeutics that take advantage of deregulated DNA ICL repair in cancer.