• Title/Summary/Keyword: DNA degradation

Search Result 415, Processing Time 0.023 seconds

Molecular Ecological Stabilities of Genetically Modified 4CB-Degrading Bacteria and Their Gene DNAs in Water Environments (유전공학적으로 변형시킨 4CB 분해세균 및 그 유전자 DNA에 대한 수계에서의 분자생태학적 안정성)

  • Park, Sang-Ho;Myong-Ja Kwak;Ji-Young Kim;Chi-Kyung Kim
    • The Korean Journal of Ecology
    • /
    • v.18 no.1
    • /
    • pp.109-120
    • /
    • 1995
  • As the genetically modified microorganisms (GMMs) and their recombinant plasmid DNAs could be released into natural environments, their stabilities and impacts to indigenous microorganisls have become very importhant research subjects concerning with environmental and ecological aspects. In this study, the genetically modified E. coli CU103 and its recombinant pCU103 plasmid DNA, in which pcbCD genes involving in degradation of biphenyl and 4-chlorobiphenyl were cloned, were studied for their survival and stability in several different waters established under laboratory conditions. E. coli CU103 and its host E. coli XL1-Blue survived longer in sterile distilled water (SDW) and filtered autoclaved river water (FAW) than in filtered river water (FW). A lot of extracellular DNAs were released from E. coli CU103 by lytic action of phages in FW and the released DNAs were degraded by DNase dissolved in the water. Such effects of the factors in FW on stability of the recombinant pCU103 plasmid were also observed in the results of gel electrophoresis, quantitative analysis with bisbenzimide, and transformation assay. Therefore, the recombinant plasmids of pCU103 were found to be readily liberated from the genetically modified E. coli CU103 into waters by normal metabolic processes and lysis of cells. And the plasmid DNAs were quite stable in waters, but their stabilities could be affected by physicoKDICical and biological factors in non-sterile natural waters.

  • PDF

A Novel Reciprocal Crosstalk between RNF168 and PARP1 to Regulate DNA Repair Processes

  • Kim, Jae Jin;Lee, Seo Yun;Kim, Soyeon;Chung, Jee Min;Kwon, Mira;Yoon, Jung Hyun;Park, Sangwook;Hwang, Yiseul;Park, Dongsun;Lee, Jong-Soo;Kang, Ho Chul
    • Molecules and Cells
    • /
    • v.41 no.8
    • /
    • pp.799-807
    • /
    • 2018
  • Emerging evidence has suggested that cellular crosstalk between RNF168 and poly(ADP-ribose) polymerase 1 (PARP1) contributes to the precise control of the DNA damage response (DDR). However, the direct and reciprocal functional link between them remains unclear. In this report, we identified that RNF168 ubiquitinates PARP1 via direct interaction and accelerates PARP1 degradation in the presence of poly (ADP-ribose) (PAR) chains, metabolites of activated PARP1. Through mass spectrometric analysis, we revealed that RNF168 ubiquitinated multiple lysine residues on PARP1 via K48-linked ubiquitin chain formation. Consistent with this, micro-irradiation-induced PARP1 accumulation at damaged chromatin was significantly increased by knockdown of endogenous RNF168. In addition, it was confirmed that abnormal changes of HR and HNEJ due to knockdown of RNF168 were restored by overexpression of WT RNF168 but not by reintroduction of mutants lacking E3 ligase activity or PAR binding ability. The comet assay also revealed that both PAR-binding and ubiquitin-conjugation activities are indispensable for the RNF168-mediated DNA repair process. Taken together, our results suggest that RNF168 acts as a counterpart of PARP1 in DDR and regulates the HR/NHEJ repair processes through the ubiquitination of PARP1.

CHIP and BAP1 Act in Concert to Regulate INO80 Ubiquitination and Stability for DNA Replication

  • Seo, Hye-Ran;Jeong, Daun;Lee, Sunmi;Lee, Han-Sae;Lee, Shin-Ai;Kang, Sang Won;Kwon, Jongbum
    • Molecules and Cells
    • /
    • v.44 no.2
    • /
    • pp.101-115
    • /
    • 2021
  • The INO80 chromatin remodeling complex has roles in many essential cellular processes, including DNA replication. However, the mechanisms that regulate INO80 in these processes remain largely unknown. We previously reported that the stability of Ino80, the catalytic ATPase subunit of INO80, is regulated by the ubiquitin proteasome system and that BRCA1-associated protein-1 (BAP1), a nuclear deubiquitinase with tumor suppressor activity, stabilizes Ino80 via deubiquitination and promotes replication fork progression. However, the E3 ubiquitin ligase that targets Ino80 for proteasomal degradation was unknown. Here, we identified the C-terminus of Hsp70-interacting protein (CHIP), the E3 ubiquitin ligase that functions in cooperation with Hsp70, as an Ino80-interacting protein. CHIP polyubiquitinates Ino80 in a manner dependent on Hsp70. Contrary to our expectation that CHIP degrades Ino80, CHIP instead stabilizes Ino80 by extending its half-life. The data suggest that CHIP stabilizes Ino80 by inhibiting degradative ubiquitination. We also show that CHIP works together with BAP1 to enhance the stabilization of Ino80, leading to its chromatin binding. Interestingly, both depletion and overexpression of CHIP compromise replication fork progression with little effect on fork stalling, as similarly observed for BAP1 and Ino80, indicating that an optimal cellular level of Ino80 is important for replication fork speed but not for replication stress suppression. This work therefore idenitifes CHIP as an E3 ubiquitin ligase that stabilizes Ino80 via nondegradative ubiquitination and suggests that CHIP and BAP1 act in concert to regulate Ino80 ubiquitination to fine-tune its stability for efficient DNA replication.

Effect of Heat, Pressure, and Acid Treatments on DNA and Protein Stability in GM Soybean (GM 콩 DNA와 단백질의 안정성에 대한 열, 압력 및 산 처리의 영향)

  • Pack, In-Soon;Jeong, Soon-Chun;Yoon, Won-Kee;Park, Sang-Kyu;Youk, Eun-Soo;Kim, Hwan-Mook
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.677-682
    • /
    • 2004
  • Debates on safety of genetically modified (GM) crops have led to mandatory-labeling legislation of GM foods in many countries including Korea. Effects of heat, pressure, and acid treatments on degradation of DNAs or proteins in GM soybean at levels below detection limits of qualitative PCR and lateral flow strip test (LFST) methods were examined. Results showed that genomic DNAs and proteins were degraded into fragment sizes no longer possible for detection of inserted gene depending on thermal, or thermal and pressure treatment period. Detectaability of LFST for toasted meal increased in weakly treated soybean. DNA and protein detection methods were barely effective for detection of GM ingredient after $121^{\circ}C$ and 1.5 atmospheric treatment for 20 min. These results will be useful in determining GM labeling requirements of processed foods.

Isolation and Characterization of Caffeine Degrading Bacteria (카페인 분해균주의 분리 및 특성)

  • Ryu, Beung-Ho;Ju, Sin-Hae
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.215-220
    • /
    • 1992
  • Several bacterial strains capable of degrading caffeine were isolated and studied for their biodegradation ability of the caffeine and some biochemical characteristics. The isolate KS-5 was identified as Pseudomonas putida and was designated as the P. putida KS-5. The optimum conditions were at $30^{\circ}C$, pH 7.0 and 1.0% caffeine. Agarose gel electrophoresis and curing experiment were found that the gene for caffeine degradation was encoded on the plasmid in P. putida KS-5 and that this strain was resistant to several antibiotics.

  • PDF

Homology Analysis Among the Biphenyl and 4-Chlorobiphenyl Degrading Genes by Southern Hybridization (Southern Hybridization에 의한 Biphenyl 및 4-Chlorobiphenyl 분해유전자들의 상동성 분석)

  • 남정현;김치경;이재구;이길재
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.1
    • /
    • pp.37-44
    • /
    • 1994
  • The homology among the genes coding for degradation of bipheny(BP) and 4-chlorobiphenyl(4CB) was comparatively analyzed by Southern hybridization in several BP/4CB degrading bacterial strains. As the hybridization results of their genomic DNAs with pcbABCD as the DNA probe, the group of Pseudomonas sp. DJ-12. P08 and P27 strain was separated by the group of P20 and P1242 strains. The P. pseudoalcaligenes KF707 showed the hybidization signal which was homologous to the group of DJ-12, but they had different restriction endonuclease sites. The pcbAB genes in pCUl recombinant plasmid from Pseudomonas sp. DJ-12 appeared to be homologous to pchAB genes in pKTF20 cloned from P. pseudoalcaligenes KF707, but the C genes in both strains were not homologous. The bphABC in pKTF20 showed the signals homologous to the cbp ACB in pAW6194 cloned from P. putida OU83, but homologous signal was not found botween the pcbABCD genes in pCUl and the cbpADCB genes in pAW6194 recombbinant plasmid.

  • PDF

Cloning of pcb Genes in Pseudomonas sp.P20 Specifying Degradation of 4-Clorobiphenyl (4-Chlorobiphenyl을 분해하는 Pseudomonas sp. P20의 pcb 유전자군의 클로닝)

  • 남정현;김치경
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.4
    • /
    • pp.353-359
    • /
    • 1994
  • Pseudomonas sp. P20 was a bacterial isolate which has the ability to degrade 4-chlorobi- phenyl(4CB) to 4-chlorobenzoic acid via the process of meta-cleavage. The recombinant plasmid pCK1 was constructed by insetting the 14-kb EcoRI fragment of the chromosomal DNA containing the 4CB-degrading genes into the vector pBluescript SK(+). Subsequently, E. coli XL1-Blue was transformed with the hybrid plasmid producing the recombinant E. coli CK1. The recombinant cells degraded 4CB and 2,3-dihydroxybiphenyl(2,3-DHBP) by the pcbAB and pcbCD gene products, respectively. The pcbC gene was expressed most abundantly at the late exponential phase in E. coli CK1 as well as in Pseudomonas sp. P20, and the level of the pcbC gene product, 2,3-DHBP dioxygenase, expressed in E. coli CK1 was about two-times higher than in Pseudomonas sp. P20. The activities of 2,3-DHBP dioxygenase on catechol and 3-methylcatechol were about 26 to 31% of its activity on 2,3-DHBP, but the enzyme did not reveal any activities on 4-methylcatechol and 4-chlorocatechol.

  • PDF

Isolation and Characterization of Pseudomonas sp. KM10, a Cadmium- and Mercury-resistant, and Phenol-degrading Bacterium

  • Yoon, Kyung-Pyo
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.4
    • /
    • pp.388-398
    • /
    • 1998
  • A bacterium which is resistant to both mercury and cadmium, and also capable of utilizing phenol as a carbon and energy source, was isolated from the Kumho River sediments near Kangchang Bridge, Taegu, Korea. The isolate was labeled Pseudomonas sp. KM10 and characterized. The bacteria grew in 4 mM $CdCl_2$and in $70{\mu}M$ $HgCl_2$. The bacteria efficiently removed over 90% of 1 g/l phenol within 30 h. In the presence of 1.250 g/l phenol, the growth of the microorganism was slightly retarded and the microorganism could not tolerate 1.5 g/l phenol. Curing of plasmid from the bacteria was carried out to generate a plasmidless strain. Subsequent experiments localized the genes for phenol degradation in plasmid and the genes for mercury resistance and cadmium resistance on the chromosome. Dot hybridization and Southern hybridization under low stringent conditions were performed to identify the DNA homology. These results showed significant homologies between the some sequence of the chromosome of Pseudomonas sp. KM10 and merR of Shigella flexneri R 100, and between the some sequence of the chromosome of Pseudomonas sp. KM10 and cadA of Staphylococcus aureus pI258. The mechanism of cadmium resistance was efflux, similar to that of S. aureus pI258 cadA, and the mechanism of mercury resistance was volatilization, similar to that of S. flexneri R100 mer.

  • PDF

Metagenomic and Proteomic Analyses of a Mangrove Microbial Community Following Green Macroalgae Enteromorpha prolifera Degradation

  • Wu, Yijing;Zhao, Chao;Xiao, Zheng;Lin, Hetong;Ruan, Lingwei;Liu, Bin
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.12
    • /
    • pp.2127-2137
    • /
    • 2016
  • A mangrove microbial community was analyzed at the gene and protein levels using metagenomic and proteomic methods with the green macroalgae Enteromorpha prolifera as the substrate. Total DNA was sequenced on the Illumina HiSeq 2000 PE-100 platform. Two-dimensional gel electrophoresis in combination with liquid chromatography tandem mass spectrometry was used for proteomic analysis. The metagenomic data revealed that the orders Pseudomonadales, Rhizobiales, and Sphingomonadales were the most prevalent in the mangrove microbial community. By monitoring changes at the functional level, proteomic analyses detected ATP synthase and transporter proteins, which were expressed mainly by members of the phyla Proteobacteria and Bacteroidetes. Members of the phylum Proteobacteria expressed a high number of sugar transporters and demonstrated specialized and efficient digestion of various glycans. A few glycoside hydrolases were detected in members of the phylum Firmicutes, which appeared to be the main cellulose-degrading bacteria. This is the first report of multiple "omics" analysis of E. prolifera degradation. These results support the fact that key enzymes of glycoside hydrolase family were expressed in large quantities, indicating the high metabolic activity of the community.

Characteristics of Several Bacterial Isolates Capable of Degrading Chloroaliphatic Compounds via Hydrolytic Dechlorination

  • Song, Ji-Sook;Lee, Dong-Hun;Lee, Kyoung;Kim, Chi-Kyung
    • Journal of Microbiology
    • /
    • v.41 no.4
    • /
    • pp.277-283
    • /
    • 2003
  • Haloaliphatic hydrocarbons have been widely used as solvents and ingredients of pesticides and herbicides. However, when these compounds contaminate the environment, they can be very hazardous to animals and humans because of their potential toxicity and carcinogenicity. Therefore, lots of studies have been made for microbial degradation of those pollutant chemicals. In this study, 11 bacterial strains capable of degrading 1,2-dichloroethane (1,2-DCA), 2-chloropropionic acid (2-CPA), 2,3-dichloropropionic acid (2,3-DCPA), and 2-monochloroacetic acid (2-MCA) by hydrolytic dechlorination under aerobic conditions were isolated from wastewaters and rice paddy soil samples. Their morphological and biochemical characteristics and their degradation capabilities of haloaliphatic hydrocarbons were examined. On the basis of the 16S rDNA sequences, 8 different kinds of microbial species, including Pseudomonas plecoglossicida, Xanthobacter flavus, Ralstonia eutropha, were identified. All of the isolated strains can degrade MCA. In particular, strains UE-2 and UE-15 degraded 1,2-DCA, and strain CA-11 degraded 2,3-DCPA, which are hardly degraded by other strains.