• Title/Summary/Keyword: DNA comets

Search Result 9, Processing Time 0.022 seconds

Detection of Irradiated Astragalus membranaeus Bunge and Havenia duzcis Thumb Using DNA Comet Assay

  • Yi, Jin-Hee ;Song, Kyung-Bin
    • Preventive Nutrition and Food Science
    • /
    • v.7 no.3
    • /
    • pp.323-326
    • /
    • 2002
  • Ionizing radiation can be used to sanitize herbs contaminated by various microorganisms. However, health concerns related to irradiation damage to complex molecules in plants necessitate that methods be developed to monitor such damage. To elucidate DNA damage of herbs caused by irradiation, the DNA comet assay was used for Astragalus membranaceus Bunge and Havenia dulcis Thumb, irradiated at 1, 5, 7, and 10 kGy. With increasing irradiation doses, the tails of comets became longer with average tail length increasing from 17 (non-irradiated) to 124 (10 kGy) $\mu$m in Astragalus membranaceus Bunge. Above 7 kGy, some of the tails were separated from the heads of comets. Distribution patterns of the tail length of In comets selected randomly in the irradiated herbs were analyzed to quantify the DNA damage. These results clearly suggest that the DNA comet assay is an effective and inexpensive tool for the detection of irradiation damage to DNA in herbs.

Single Cell Gel Electrophoresis (comet assay) to Detect DNA Damage and Apoptosis in Cell Level (DNA damage와 Apoptosis를 정량화하는 단세포전기영동법)

  • 류재천;김현주;서영록;김경란
    • Environmental Mutagens and Carcinogens
    • /
    • v.17 no.2
    • /
    • pp.71-77
    • /
    • 1997
  • The single cell gel electrophoressis(SCGE) assay, also known as the comet assay, is a rapid, simple, visual and sensitive technique for measuring and analysing DNA breakage in mammalian cells. The SCGE or comet assay is a promising test for the detection of DNA damage and repair in individnal cells. It has widespread potential applications in DNA damage and repair studies, genotoxicity testing and biomonitoring. In this microgel electrophoresis technique, cells are embedded in agarose gel on microscope slides, iysed and electrophoresed under alkaline conditions. Cells with increased DNA damage display increased migration of DNA from the nucleus towards the anode. The length of DNA migration indicates the amount of DNA breakage in the cell. The comet assay is also capable of identifying apoptotic cells which contain highly fragmented DNA. Here we review the development of the SCGE assay, existing protocols for the detection and analysis of comets, the relevant underlying principles determining the behaviour of DNA and the potential applications of the technique.

  • PDF

Detection of Irradiated Grains Using the DNA ‘Comet Assay’ (DNA ‘Comet Assay’를 이용한 곡류의 방사선 조사 여부 확인)

  • Kim, Choong-Ki;Yang, Jae-Seung;Lee, Hae-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.906-911
    • /
    • 1999
  • This study was to determine whether DNA 'Comet Assay' can be applied to the detection of grains irradiated with low doses of Co-60 gamma radiation. Sesame, perilla, wheat, barley and rice were exposed to different doses of 0.1, 0.3, 0.5, 0.7 and 1.0 kGy. The cells isolated from the samples were embedded in a agarose gel on a microscope slide, lysed in lysis solution, and subjected to electrophoresis. DNA and its fragments migrated in the gel produced the characteristic pattern of DNA comet, of which the tail length was measured in a microscope. All the samples irradiated at 0.3 kGy and higher were applicable to detect post-irradiation by the tail length of their comets. Irradiated samples showed comets with long tails and their tail length increased with the dose, while unirradiated samples showed no or very short tails. Especially, sesame, perilla and wheat irradiated at 0.1 kGy could be distinguished from unirradiated samples by visual inspection of the slide in a microscope. Thus, DNA 'Comet Assay' might be applied to the detection of irradiated grains as a simple, inexpensive and rapid screening test.

  • PDF

Detection of Irradiated Beef and Pork by DNA Comet Assay (DNA Comet Assay를 이용한 방사선 조사 쇠고기와 돼지고기의 검지 기술)

  • 박준영;오경남;김경은;양재승
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.6
    • /
    • pp.1025-1029
    • /
    • 2000
  • This study was conducted to investigate whether a DNA comet assay could be applied for identifying irradiated pork and beef. Pork and beef were irradiated with Co-60 gamma rays at 0.1, 0.3, 0.5, 0.7 and 1.0 kGy, and stored in a freezer Cells separated from the samples were embedded in agarose gel on a slide, dissolved in a lysis solution, and electrophoresed at 2 V/cm for 2.0 min by horizontal electrophoesis. The cells were then stained with a silver staining in order to visualize the DNA using a micro-scope. The DNA fragments of the irradiated cells stretched or migrated out of the cells and formed tails towards the anode, giving the appearance of comets, while unirradiated cells formed very short or no tails. The distance of DNA migration increased with irradiation dose. Since the statistical analysis showed a significant correlation between tail length and irradiation dose, a DNA comet assay could provide not only identification but also estimation of the irradiation dose for irradiated beef and pork.

  • PDF

Optimal Conditions of Single Cell Gel Electrophoresis (Comet) Assay to detect DNA single strand breaks in Mouse Lymphoma L5178Y cells

  • Ryu, Jae-Chun;Kwon, Oh-Seung;Kim, Hyung-Tae
    • Environmental Mutagens and Carcinogens
    • /
    • v.21 no.2
    • /
    • pp.89-94
    • /
    • 2001
  • Recently, single cell gel electrophoresis, also known as comet assay, is widely used for the detection and measurement of DNA strand breaks in vitro and in vivo in many toxicological fields such as radiation exposure, human monitoring and toxicity evaluation. As well defined, comet assay is a sensitive, rapid and visual method for the detection of DNA strand breaks in individual cells. Briefly, a small number of damaged cells suspended in a thin agarose gel on a microscope slide were lysed, unwinded, electrophoresed, and stained with a fluorescent DNA binding dye. The electric current pulled the charged DNA from the nucleus such that relaxed and broken DNA fragments migrated further. The resulting images which were subsequently named for their appearance as comets, were measured to determine the extent of DNA damages. However, some variations could be occurred in procedures, laboratories's conditions and kind of cells used. Hence, to overcome and to harmonize these matters in comet assay, International Workshop on Genotoxicity Test Procedure (IWGTP) was held with several topics including comet assay at Washington D.C. on March, 1999. In spite of some consensus in procedures and conditions in IWGTP, there are some problems still remained to be solved. In this respect, we attempted to set the practical optimal conditions in the experimental procedures such as lysis, unwinding, electrophoresis and neutralization conditions and so on. First of all, we determined optimal lysis and unwinding time by using 150 $\mu$M methyl methanesulfonate (MMS) which is usually used concentration. And then, we determined optimal positive control concentrations of benzo(a)pyrene (BaP) and MMS in the presence and absence of S9 metabolic activation system, respectively.

  • PDF

Mechanism study on DNA damage and Apoptosis induced by heak shock using Comet Assay

  • Seo, Young-Rok;Han, Sung-Sik;Kim, L. O′Neill;Ryu, Jae-Chun
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 1997.12a
    • /
    • pp.101-101
    • /
    • 1997
  • Comet assay, single cell gel electrophoresis has been known as useful, rapid, simple, visual, and sensitive technique for measuring the DNA breakage in mammalian ce1ls. For evaluation of DNA damage using comet assay, early studies reported a change in comet length and intensity with DNA damage using simple visual technique, such as fluorescence microscopy with eyespiece. In recent, some workers are observing and analyzing nucleotide of comets using quantitative fluorescence image analysis system to estimate 'tail moment', which is defined as the product of the tail length and the fraction of total DNA in tail. Our laboratory also adopted the image analysis software for qualification. In addition, many of the practical features of comet assay render it potentially attractive as useful tool for molecular toxicology and carcinogenesis, because the system is already showing considerable promise as rapid predictor in both in vitro and in vivo experimental designs. Recently, the comet assay becomes a attractive technique to study of apoptosis, because apoptotic fragmentation of nuclear DNA into nucleosomal sizes can be evaluated by the comet assay. So, we attempted to apply the comet assay to studying the effect of various stress on the apoptosis-sensitive cell lines. Particularly, focusing on the hyperthermic apoptosis, we could find that heat shock(44˚C for 60 minutes) was sufficient to induced apoptosis in these cell lines. But using the highly sensitive comet assay, we could not detect DNA breaks immediately after heat shock.

  • PDF

Detection of Irradiated Beans Using the DNA Comet Assay (DNA Comet Assay를 이용한 콩류의 방사선 조사 확인)

  • 오경남;김경은;양재승
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.5
    • /
    • pp.843-848
    • /
    • 2000
  • The single cell-gel electrophoresis assay (comet assay) was used to identify irradiated beans. Soy beans, kidney beans, and red beans were irradiated with $^{60}Co$ gamma rays at 0.1, 0.3, 0.5, 0.7, and 1.0 kGy. Beans were peeled out, crushed lightly, and treated with phosphate-buffered saline (PBS) to extract cells. The extracted cell suspension was mixed with agarose gel solution and spread on an agarose precoated slide. After lysis of the cells, they were subjected to microgel electrophoresis for 2 minutes, and then silver-stained. We found that the DNA fragments of the irradiated samples were stretched, migrated out of the cells, and formed tails towards the anode giving the appearance of comets, while the unirradiated or the undamaged cells formed very short or no tails. The tail lengths of irradiated samples were significantly increased as irradiation dose increased at the above 0.3 kGy.

  • PDF

Detection of Radiation Induced Markers in Oranges Imported from the United States of America (미국산 오렌지의 Radiation Induced Marker 검색)

  • 조덕조;권중호
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • Radiation induced markers were investigated for the detection of irradiated oranges imported from America. In the DNA comet assay, the non-irradiated and irradiated samples showed the comets with long tails in both seed and flesh. Though this tendency was maintained for 6 weeks, identification of non-irradiated or irradiated samples was impossible. In the thermoluminescence (TL) measurement, the non-irradiated samples revealed a glow curve with low intensity at about 28$0^{\circ}C$, while the irradiated samples showed with higher intensity at around 18$0^{\circ}C$. There were no remarkable changes in detection properties for 6 weeks after irradiation. The TL ratio of area for TL$_1$ glow curve to TL$_2$ was below 0.1 for the non-irradiated samples and 0.5 or more for the irradiated ones during storage. In the electron spin resonance (RSR) measurement, irradiated oranges showed an unspecific central signal in all parts (seed, flesh and peel), so the detection for radiation treatment of oranges was impossible. Based on the results, DNA comet assay and ESR were not useful for the detection, but TL was appropriate to search radiation induced markers of oranges during storage period. The detectable period during storage is confirmed by sensory evaluation.