• Title/Summary/Keyword: DNA comet

Search Result 322, Processing Time 0.018 seconds

Study on the Characteristics of DNA Comet Assay for Irradiated Vegetables and Grains (방사선조사된 채소류 및 곡물류의 DNA Comet Assay 특성 연구)

  • Seo, Jung-Eun;Oh, Se-Wook;Kim, Yun-Ji;Lee, Nam-Hyouck;Hong, Sang-Pill;Kim, Young-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.4
    • /
    • pp.472-476
    • /
    • 2008
  • The possibility of DNA comet assay as a rapid method for screening the irradiated vegetables and grains was evaluated. Vegetables (spring onion, garlic, and tomato) irradiated at $0{\sim}3$ kGy and grains (rice flour and black soybean) irradiated at $0{\sim}9$ kGy were used as samples. Optimum DNA comet assay conditions, such as elution, sedimentation of suspension, and lysis time of cell, were established. The optimum conditions for vegetables were 10 min for the elution time, 0 min for the sedimentation time, and 5 min for the lysis time. The optimum conditions for grains were 15 min for the elution time, 60 min for the sedimentation time, and 30 min for the lysis time. For the food application of DNA comet assay, it was possible to screen various food samples irradiated at the following doses: spring onion at 2 kGy, garlic at 3 kGy, tomato at 1 kGy, rice flour at 9 kGy, and black soybean at 3 kGy. Each sample showed different forms and sizes in DNA comet. Therefore, further studies on various methods using comet shape, concentration, or area in DNA comet assay are necessary.

Application of the Alkaline Comet Assay for Detecting Oxidative DNA Damage in Human Biomonitoring (인체 산화적 DNA손상에 대한 Human Biomonitoring도구로서 Alkaline Comet Assay의 활용 가능성 연구)

  • 박은주;강명희
    • Journal of Nutrition and Health
    • /
    • v.35 no.2
    • /
    • pp.213-222
    • /
    • 2002
  • The alkaline comet assay has been used with increasing popularity to investigate the level of DNA damage in biomonitoring studies within the last decade in Western countries. The purpose of this study was to evaluate the usefulness of the alkaline comet assay as a biomarker of oxidative DNA damage for monitoring in the Korean population, and also to evaluate the effect of nutritional status and lifestyle factors on H2O2 induced oxidative DNA damage measured by the alkaline comet assay in human lymphocytes. The study population consisted of 61 healthy Korean male volunteers, aged 20-28. Epidemiological background data including dietary habits, smoking habits and anthropometrical measurements were collected through personal interviews. After blood collection, the comet assay in peripheral lymphocytes and plasma lipids analysis was carried out and the results analyzed. Tail moment (TM) and tail length (TL) of the comet assay were use\ulcorner to measure DNA damage in the lymphocytes of the subjects. Statistically significant (p < 0.05) positive correlations were observed between DNA damage (TM or TL) and smoking habits expressed as cigarettes smoked per day and pack years (r = 0.311 and 0.382 for TM, r = 0.294 and 0.350 for TL, respectively). There were also significant positive correlations between DNA damage parameter and waist-hip ratio. Higher plasma triglyceride levels were associated with increased damage to DNA. There were no correlations between the consumption frequencies of vegetables and DNA damage to the subjects. However, consumption frequencies of fruit and fruit juice intake were inversely associated with the TM and TL. The results indicate that die comet assay is a simple, rapid and sensitive method for detecting lymphocyte DNA damage induced by cigarette smoking. Consumption of fruit or fruit juices could potentiall modify the damaged DNA in the human peripheral lymphocytes of young Korean men.

Single Cell Gel Electrophoresis (comet assay) to Detect DNA Damage and Apoptosis in Cell Level (DNA damage와 Apoptosis를 정량화하는 단세포전기영동법)

  • 류재천;김현주;서영록;김경란
    • Environmental Mutagens and Carcinogens
    • /
    • v.17 no.2
    • /
    • pp.71-77
    • /
    • 1997
  • The single cell gel electrophoressis(SCGE) assay, also known as the comet assay, is a rapid, simple, visual and sensitive technique for measuring and analysing DNA breakage in mammalian cells. The SCGE or comet assay is a promising test for the detection of DNA damage and repair in individnal cells. It has widespread potential applications in DNA damage and repair studies, genotoxicity testing and biomonitoring. In this microgel electrophoresis technique, cells are embedded in agarose gel on microscope slides, iysed and electrophoresed under alkaline conditions. Cells with increased DNA damage display increased migration of DNA from the nucleus towards the anode. The length of DNA migration indicates the amount of DNA breakage in the cell. The comet assay is also capable of identifying apoptotic cells which contain highly fragmented DNA. Here we review the development of the SCGE assay, existing protocols for the detection and analysis of comets, the relevant underlying principles determining the behaviour of DNA and the potential applications of the technique.

  • PDF

Assessment of Nucleus-DNA Damage in Red Pepper Cells Treated with γ-Radiation through Comet Assay (Comet 분석을 통한 방사선처리 고추세포의 핵 DNA 손상평가)

  • An, Jung-Hee;Back, Myung-Hwa;Kim, Jae-Sung;Jeong, Jeong-Hag;Kwon, Soon-Tae
    • Journal of Plant Biotechnology
    • /
    • v.31 no.3
    • /
    • pp.225-230
    • /
    • 2004
  • We employed single cell gel electrophoresis method (comet assay) to analyze the degree of nucleus-DNA damage in the leaves of red pepper (Capsicum annuum L.) seedlings exposed to $^{60}$ CO v-radiation stress. Nucleus-DNA damage was measured as the ratio of tail length (T) to head length (H) in individual comet image isolated from pepper leaf cell. The T/H ratio of control-cells and treated-cells at 50 or 100 Gy were 1.28 and 3.54 or 3.39, respectively, suggesting that nuclei of pepper cells were severely damaged in the integrity of DNA strand by the treatment of enhanced v-radiation. The percentage of head-DNA in control-cells was 76.8%, whereas those of 50 and 100 Gy treated-cells were 55.9% and 59.9%, respectively. Pretreatment of low dose (4 to 20 Gy) radiation to seeds decreased DNA-damage in the leaves of seedlings treated with high dose radiation at 50 or 100 Gy. In this experiment, we developed a sensitive, reliable and rapid method for evaluating genotoxic effect in the nuclei of plant cells by employing comet assay.

Detection of Irradiated Fruits Using the DNA Comet Assay (DNA Comet Assay를 이용한 과일의 방사선 조사 확인)

  • Oh, Kyong-Nam;Park, Jun-Young;Kim, Kyeung-Eun;Yang, Jae-Seung
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.531-537
    • /
    • 2000
  • The simple microgel electrophoresis of single cells, a 'comet assay', on fruit seeds enabled the rapid identification of irradiated fruits by comparing the intact non-irradiated cells and the damaged cells of irradiated fruits. Grapes and plums were irradiated with 0.1, 0.5, 0.7, 1.0 kGy and strawberries, peaches, apples, and nectarines were irradiated with only 1.0 kGy. Seeds were isolated, crushed, and the suspended cells were embedded in an agarose layer. After lysis of the cells, they were subjected to microgel electrophoresis for 2 minutes, and then stained. The DNA radiation-induced fragmentation of all the fruits stretched and migrated out of the cells forming a tail toward the anode giving the appearance of a comet, while the undamaged cells appeared as intact nuclei without tails. Grape and plum seeds irradiated at 0.5 kGy and higher showed significant increases in tail length. With increasing the irradiation doses, longer extention of the DNA from the nucleus toward the anode was observed. Strawberry, peach, apple, and nectarine seeds irradiated with 1.0 kGy also showed the longer tails than non-irradiated ones. DNA comet assay as a rapid and inexpensive screening technique could be an officially validated method for the detection of irradiated fruits.

  • PDF

Detection of Irradiated Beans Using the DNA Comet Assay (DNA Comet Assay를 이용한 콩류의 방사선 조사 확인)

  • 오경남;김경은;양재승
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.5
    • /
    • pp.843-848
    • /
    • 2000
  • The single cell-gel electrophoresis assay (comet assay) was used to identify irradiated beans. Soy beans, kidney beans, and red beans were irradiated with $^{60}Co$ gamma rays at 0.1, 0.3, 0.5, 0.7, and 1.0 kGy. Beans were peeled out, crushed lightly, and treated with phosphate-buffered saline (PBS) to extract cells. The extracted cell suspension was mixed with agarose gel solution and spread on an agarose precoated slide. After lysis of the cells, they were subjected to microgel electrophoresis for 2 minutes, and then silver-stained. We found that the DNA fragments of the irradiated samples were stretched, migrated out of the cells, and formed tails towards the anode giving the appearance of comets, while the unirradiated or the undamaged cells formed very short or no tails. The tail lengths of irradiated samples were significantly increased as irradiation dose increased at the above 0.3 kGy.

  • PDF

Mechanism study on DNA damage and Apoptosis induced by heak shock using Comet Assay

  • Seo, Young-Rok;Han, Sung-Sik;Kim, L. O′Neill;Ryu, Jae-Chun
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 1997.12a
    • /
    • pp.101-101
    • /
    • 1997
  • Comet assay, single cell gel electrophoresis has been known as useful, rapid, simple, visual, and sensitive technique for measuring the DNA breakage in mammalian ce1ls. For evaluation of DNA damage using comet assay, early studies reported a change in comet length and intensity with DNA damage using simple visual technique, such as fluorescence microscopy with eyespiece. In recent, some workers are observing and analyzing nucleotide of comets using quantitative fluorescence image analysis system to estimate 'tail moment', which is defined as the product of the tail length and the fraction of total DNA in tail. Our laboratory also adopted the image analysis software for qualification. In addition, many of the practical features of comet assay render it potentially attractive as useful tool for molecular toxicology and carcinogenesis, because the system is already showing considerable promise as rapid predictor in both in vitro and in vivo experimental designs. Recently, the comet assay becomes a attractive technique to study of apoptosis, because apoptotic fragmentation of nuclear DNA into nucleosomal sizes can be evaluated by the comet assay. So, we attempted to apply the comet assay to studying the effect of various stress on the apoptosis-sensitive cell lines. Particularly, focusing on the hyperthermic apoptosis, we could find that heat shock(44˚C for 60 minutes) was sufficient to induced apoptosis in these cell lines. But using the highly sensitive comet assay, we could not detect DNA breaks immediately after heat shock.

  • PDF

Detection of Irradiated Beef and Pork by DNA Comet Assay (DNA Comet Assay를 이용한 방사선 조사 쇠고기와 돼지고기의 검지 기술)

  • 박준영;오경남;김경은;양재승
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.6
    • /
    • pp.1025-1029
    • /
    • 2000
  • This study was conducted to investigate whether a DNA comet assay could be applied for identifying irradiated pork and beef. Pork and beef were irradiated with Co-60 gamma rays at 0.1, 0.3, 0.5, 0.7 and 1.0 kGy, and stored in a freezer Cells separated from the samples were embedded in agarose gel on a slide, dissolved in a lysis solution, and electrophoresed at 2 V/cm for 2.0 min by horizontal electrophoesis. The cells were then stained with a silver staining in order to visualize the DNA using a micro-scope. The DNA fragments of the irradiated cells stretched or migrated out of the cells and formed tails towards the anode, giving the appearance of comets, while unirradiated cells formed very short or no tails. The distance of DNA migration increased with irradiation dose. Since the statistical analysis showed a significant correlation between tail length and irradiation dose, a DNA comet assay could provide not only identification but also estimation of the irradiation dose for irradiated beef and pork.

  • PDF

Application of Single Cell Gel Electrophoresis for Detection of DNA Single Strand Breaks in DNA of Fish Blood Cell (어류혈구세포에 있어서 Single Cell Gel Electrophoresis를 응용한 DNA Single Strand Breack의 측정)

  • KIM Gi Beum;LEE Richard F.;MARUYA Keith A.
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.4
    • /
    • pp.346-351
    • /
    • 2003
  • Single-cell gel electrophoresis (comet assay) was used to detect DNA single strand break in blood cells from several marine fish species. Three fish species were collected from Georgia coastal area. Mummichog, Fundulus heteroclitus showed higher DNA damage than sea bass, Lateolabrax japonicus and trout, Oncorhynchus masou masou under the same experimental conditions. Mummichogs had more alkaline-labile sites on their DNA than other fish species. The comet assay with mummichog blood cells at pH 12.5 showed a dose-response curve with the increasing concentrations of hydrogen peroxide. While the isolated leucocytes showed no increase of DNA damage after in vitro exposure to 2-methyl-1,4-naphthoquinone (MNQ), erythrocytes showed dose-dependent DNA damage. These results indicate that the comet assay can be applied successfully as a bioassay using erythrocyte for environmental monitoring.

Discrimination of Irradiated Beef Using Comet Assay (Comet assay를 이용한 방사선 조사육의 판별)

  • Jeong, Seok-Kyu;Park, Jong-Heum;Ji, Seung-Taek;Park, Kum-Ju;Kim, Hai-Hong;Hyun, Chang-Kee;Shin, Heuyn-Kil
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.747-754
    • /
    • 2000
  • DNA damages in post-mortem bovine muscle samples caused by gamma irradiation at doses of 1 to 10 kGy were determined by Comet assay. When the cell extract was prepared in a physical method and followed by neutral lysis and neutral electrophoresis, the optimal comet images could be obtained. DNA damages were evaluated from the mean tail length, the distributions of comet images in 4 groups divided by tail length and the relative damage index (RDI) values calculated from the distribution pattern. The mean tail length and RDI value were increased by increasing the irradiation dose, and the RDI value was found to be useful as an index for discriminating of irradiation and measuring the irradiated dose. Blind tests using Korean domestic (Hanwoo) and imported beef samples showed a higher RDI value for the latter. However, the value was lower than those of irradiated samples indicating that the cause of DNA damages in the imported beef samples might be not irradiation but low-temperature treatments. It was concluded from the results of this study that the irradiated beef and its irradiated dose could be detected and predicted by Comet assay.

  • PDF