• Title/Summary/Keyword: DNA coding method

Search Result 87, Processing Time 0.027 seconds

Design of fuzzy Independence Array Structure using DNA Coding Optimization (DNA 코딩 최적화에 의한 독립 배열구조의 퍼지규칙 설계)

  • Kwon, Yang-Won;Choi, Yong-Sun;Han, Il-Suk;Ahn, Tae-Chon
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.3019-3021
    • /
    • 2000
  • In this paper. a new fuzzy modeling algorithm is proposed : it can express a given unknown system with a small number of fuzzy rules and be easily implemented. This method uses an independent array instead of a lattice form for a premise membership function. For the purpose of getting the initial value of fuzzy rules. the method uses the fuzzy c-means clustering method. To optimally tune the initial fuzzy rule. the DNA coding method is also utilized at same time. Box and Jenkins's gas furnace data is used to illustrate the validity of the proposed algorithm.

  • PDF

Evolvable Neural Networks Based on Developmental Models for Mobile Robot Navigation

  • Lee, Dong-Wook;Seo, Sang-Wook;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.3
    • /
    • pp.176-181
    • /
    • 2007
  • This paper presents evolvable neural networks based on a developmental model for navigation control of autonomous mobile robots in dynamic operating environments. Bio-inspired mechanisms have been applied to autonomous design of artificial neural networks for solving practical problems. The proposed neural network architecture is grown from an initial developmental model by a set of production rules of the L-system that are represented by the DNA coding. The L-system is based on parallel rewriting mechanism motivated by the growth models of plants. DNA coding gives an effective method of expressing general production rules. Experiments show that the evolvable neural network designed by the production rules of the L-system develops into a controller for mobile robot navigation to avoid collisions with the obstacles.

Code Optimization in DNA Computing for the Hamiltonian Path Problem (해밀톤 경로 문제를 위한 DNA 컴퓨팅에서 코드 최적화)

  • 김은경;이상용
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.4
    • /
    • pp.387-393
    • /
    • 2004
  • DNA computing is technology that applies immense parallel castle of living body molecules into information processing technology, and has used to solve NP-complete problems. However, there are problems which do not look for solutions and take much time when only DNA computing technology solves NP-complete problems. In this paper we proposed an algorithm called ACO(Algorithm for Code Optimization) that can efficiently express DNA sequence and create good codes through composition and separation processes as many as the numbers of reaction by DNA coding method. Also, we applied ACO to Hamiltonian path problem of NP-complete problems. As a result, ACO could express DNA codes of variable lengths more efficiently than Adleman's DNA computing algorithm could. In addition, compared to Adleman's DNA computing algorithm, ACO could reduce search time and biological error rate by 50% and could search for accurate paths in a short time.

DNA Computing adopting DNA Coding Method to solve Knapsack Problem (배낭 문제를 해결하기 위해 DNA 코딩 방법을 적용한 DNA 컴퓨팅)

  • 김은경;이상용
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.243-246
    • /
    • 2004
  • 배낭 문제는 단순한 것 같지만 조합형 특성을 가진 NP-hard 문제이다 이 문제를 해결하기 위해 기존에는 GA(Genetic algorithms)를 이용하였으나 지역해에 빠질 수 있어 잘못된 해를 찾거나 찾지 못하는 문제점을 갖고 있다. 본 논문에서는 이러한 문제점들을 해결하기 위해 막대한 병렬성과 저장능력을 가진 DNA 컴퓨팅 기법에 DNA에 기반한 변형된 GA인 DNA 코딩 방법을 적용한 ACO(Algorithm for Code Optmization)를 제안한다. ACO는 배낭 문제 중 (0,1)-배낭 문제에 적용하였고, 그 결과 기존의 GA를 이용한 것 보다 초기 문제 표현에서 우수한 적합도를 생성했으며, 빠른 시간내에 우수한 해를 찾을 수 있었다.

  • PDF

Reversible DNA Watermarking Technique Using Histogram Shifting for Bio-Security (바이오 정보보호 위한 히스토그램 쉬프팅 기반 가역성 DNA 워터마킹 기법)

  • Lee, Suk-Hwan;Kwon, Seong-Geun;Lee, Eung-Joo;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.244-253
    • /
    • 2017
  • Reversible DNA watermarking is capable of continuous DNA storage and forgery prevention, and has the advantage of being able to analyze biological mutation processes by external watermarking by iterative process of concealment and restoration. In this paper, we propose a reversible DNA watermarking method based on histogram multiple shifting of noncoding DNA sequence that can prevent false start codon, maintain original sequence length, maintain high watermark capacity without biologic mutation. The proposed method transforms the non-coding region DNA sequence to the n-th code coefficients and embeds the multiple bits of the n-th code coefficients by the non-recursive histogram multiple shifting method. The multi-bit embedding process prevents the false start codon generation through comparison search between adjacent concealed nucleotide sequences. From the experimental results, it was confirmed that the proposed method has higher watermark capacity of 0.004-0.382 bpn than the conventional method and has higher watermark capacity than the additional data. Also, it was confirmed that false start codon was not generated unlike the conventional method.

Automatic Acquisition of Local Fuzzy Rules by DNA Coding in new Composition Reasoning Method (새로운 합성 추론법에서 DNA 코딩을 이용한 국소 퍼지 규칙의 자동획득)

  • 박종규;안태천;윤양웅
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.4
    • /
    • pp.56-67
    • /
    • 1999
  • In this paper, the new composition Irethod of global and local fuzzy reasoning concepts is proposed to reduce, optimize and automatically acquire the number of rules, without any lose of the general performances in conventional fuzzy controllers. In order to control the interaction between global reasoning and local reasoning, the DNA coding algorithm is introduced to the local fuzzy reasoning of the proposed composition fuzzy reasoning rrethod. The method is awlied to the real liquid level control system for the purpose of evaluating the performance. The sinru1ation results show that the proposed technique can control the system with higher accuracy and automatical1y acquire the fuzzy rules with rmre feasibility, than the conventional methods.ethods.

  • PDF

A DNA Sequence Generation Algorithm for Traveling Salesman Problem using DNA Computing with Evolution Model (DNA 컴퓨팅과 진화 모델을 이용하여 Traveling Salesman Problem를 해결하기 위한 DNA 서열 생성 알고리즘)

  • Kim, Eun-Gyeong;Lee, Sang-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.222-227
    • /
    • 2006
  • Recently the research for Traveling Salesman Problem (TSP) using DNA computing with massive parallelism has been. However, there were difficulties in real biological experiments because the conventional method didn't reflect the precise characteristics of DNA when it express graph. Therefore, we need DNA sequence generation algorithm which can reflect DNA features and reduce biological experiment error. In this paper we proposed a DNA sequence generation algorithm that applied DNA coding method of evolution model to DNA computing. The algorithm was applied to TSP, and compared with a simple genetic algorithm. As a result, the algorithm could generate good sequences which minimize error and reduce the biologic experiment error rate.

An Evolution of Cellular Automata Neural Systems using DNA Coding Method (DNA 코딩방법을 이용한 셀룰라 오토마타 신경망의 진화)

  • Lee, Dong-Wook;Sim, Kwee-Bo
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.12
    • /
    • pp.10-19
    • /
    • 1999
  • Cellular Automata Neural Systems(CANS) are neural networks based on biological development and evolution. Each neuron of CANS has local connection and acts as a form of pulse according to the dynamics of the chaotic neuron. CANS are generated from initial cells according to the CA rule. In the previous study, to obtain the useful ability of CANS, we make the pattern of initial cells evolve. However, it is impossible to represent all solution space, so we propose an evolving method of CA rule to overcome this defect in this paper. DNA coding has the redundancy and overlapping of gene and is apt for the representation of the rule. In this paper, we show the general expression of CA rule and propose translation method from DNA code to CA rule. The effectiveness of the proposed scheme was verified by applying it to the navigation problem of autonomous mobile robot.

  • PDF

Cloning and Nucleotide Sequence of a cDNA Encoding the Rat Triosephosphate Isomerase

  • Lee, Kyunglim;Ryu, Jiwon
    • Archives of Pharmacal Research
    • /
    • v.19 no.6
    • /
    • pp.497-501
    • /
    • 1996
  • A gene coding for triosephosphate isomerase (TPI) from a rat skeletal muscle cDNA library was cloned and its nucleotide sequence was determined. The 1, 348-bp cDNA clone contains 24 bp $5^I$ noncoding region, the entire 750 bp coding region corresponding to a protein of 249 amino acids, $547bp 3^I$ noncoding region and part of a poly(A) tail. It also contains a polyadenylation signal, AATAAA, starting from 17 bp upstream of the poly(A) tail. The calculated molecular weight of rat TPI is 27.8 kDa and the net charge is +4. The deduced amino acid sequence from rat TPI CDNA sequence has 93% and 94% homology with that of mouse and human clones, respectively. The amino acids at the residue of Asn12, Lys14, His96, Glu 166, His96, His101, Ala177, Tyr165, Glu13O, Tyr2O9, and Ser212 in catalytic site are completely identical, confirming that the functional residues in TPI proteins are highly conserved throughout evolution. The most profound characteristic of rat TPI enzyme, compared with other TPIs, is that there are five cysteine substitutions at the residue of 21, 27, 159, 195 and 204. A Glu123 instead of Gly was found in rabbit, rhesus, mouse and human sequences. Through the method of RT-PCR, the mRNA transcription level of TPI gene was found to be different among various tissues and was highest in muscle.

  • PDF

자리공 항바이러스 단백질 II 유전자의 형질전환에 의한 연초의 바이러스 저항성 품종 개발 (I)

  • 강신웅;이영기;이기원;박성원;이청호
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.21 no.1
    • /
    • pp.57-63
    • /
    • 1999
  • Pokeweed antiviral protein II (PAP-II) encoding cDNA was synthesized by reverse-transcriptase polymerase chain reaction (RT-PCR) from Phytolacca american a leaf. The PAP-II cDNA fragment of 974bp was subcloned to pBluescript II SK- SmaI site and the inserted PAP-II cDNA fragment was sequenced by dideoxy sequencing method. The number of nucleotides of PAP-II cDNA coding region containing start and stop codon was 933bp. To develop a virus-resistant tobacco plant, PAP-II cDNA fragment was inserted to pKGT101B and the insertion of PAP-II cDNA fragment was confirmed by restriction enzyme analysis and colony PCR.

  • PDF