• Title/Summary/Keyword: DNA codes

Search Result 49, Processing Time 0.024 seconds

m-ADIC RESIDUE CODES OVER Fq[v]/(v2 - v) AND DNA CODES

  • Kuruz, Ferhat;Oztas, Elif Segah;Siap, Irfan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.921-935
    • /
    • 2018
  • In this study we determine the structure of m-adic residue codes over the non-chain ring $F_q[v]/(v^2-v)$ and present some promising examples of such codes that have optimal parameters with respect to Griesmer Bound. Further, we show that the generators of m-adic residue codes serve as a natural and suitable application for generating reversible DNA codes via a special automorphism and sets over $F_{4^{2k}}[v]/(v^2-v)$.

DNA Computing Adopting DNA Coding Method to solve Maximal Clique Problem (Maximal Clique Problem을 해결하기 위한 DNA 코딩 방법을 적용한 DNA 컴퓨팅)

  • Kim, Eun-Kyoung;Lee, Sang-Yong
    • The KIPS Transactions:PartB
    • /
    • v.10B no.7
    • /
    • pp.769-776
    • /
    • 2003
  • DNA computing has used to solve MCP (Maximal Clique Problem). However, when current DNA computing is applied to MCP. it can't efficiently express vertices and edges and it has a problem that can't look for solutions, by misusing wrong restriction enzyme. In this paper we proposed ACO (Algorithm for Code Optimization) that applies DNA coding method to DNA computing to solve MCP's problem. We applied ACO to MCP and as a result ACO could express DNA codes of variable lengths and generate codes without unnecessary vertices than Adleman's DNA computing algorithm could. In addition, compared to Adleman's DNA computing algorithm, ACO could get about four times as many as Adleman's final solutions by reducing search time and biological error rate by 15%.

Code Optimization in DNA Computing for the Hamiltonian Path Problem (해밀톤 경로 문제를 위한 DNA 컴퓨팅에서 코드 최적화)

  • 김은경;이상용
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.4
    • /
    • pp.387-393
    • /
    • 2004
  • DNA computing is technology that applies immense parallel castle of living body molecules into information processing technology, and has used to solve NP-complete problems. However, there are problems which do not look for solutions and take much time when only DNA computing technology solves NP-complete problems. In this paper we proposed an algorithm called ACO(Algorithm for Code Optimization) that can efficiently express DNA sequence and create good codes through composition and separation processes as many as the numbers of reaction by DNA coding method. Also, we applied ACO to Hamiltonian path problem of NP-complete problems. As a result, ACO could express DNA codes of variable lengths more efficiently than Adleman's DNA computing algorithm could. In addition, compared to Adleman's DNA computing algorithm, ACO could reduce search time and biological error rate by 50% and could search for accurate paths in a short time.

DNA Computing Adopting DNA coding Method to solve Traveling Salesman Problem (Traveling Salesman Problem을 해결하기 위한 DNA 코딩 방법을 적용한 DNA 컴퓨팅)

  • Kim, Eun-Gyeong;Yun, Hyo-Gun;Lee, Sang-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.105-111
    • /
    • 2004
  • DNA computing has been using to solve TSP (Traveling Salesman Problems). However, when the typical DNA computing is applied to TSP, it can`t efficiently express vertices and weights of between vertices. In this paper, we proposed ACO (Algorithm for Code Optimization) that applies DNA coding method to DNA computing to efficiently express vertices and weights of between vertices for TSP. We applied ACO to TSP and as a result ACO could express DNA codes which have variable lengths and weights of between vertices more efficiently than Adleman`s DNA computing algorithm could. In addition, compared to Adleman`s DNA computing algorithm, ACO could reduce search time and biological error rate by 50% and could search for a shortest path in a short time.

Isolation and Characterization of a CDNA Encoding a Protein Homologous to the Mouse 70 kDa Heat Shock Protein (생쥐 섬 유아세포에서 70 kDa 고온충격 단백질의 CDNA 클로닝과 염기서열 분석)

  • 김창환;정선미최준호
    • The Korean Journal of Zoology
    • /
    • v.35 no.2
    • /
    • pp.203-210
    • /
    • 1992
  • Hsp70, a 70 kDa protein, is the maior protein expressed when cells are heat-shocked. A cDNA library from mouse ID13 cells was screened with the human hsp70 gene as a probe, and a positive clone was obtained. The positive clone was subcloned into puc19 and the precise restriction was obtained. The CDNA was sequenced by the Sanger's dideoxv termination method. Single open reading frame that codes for a protein of 70 kDa was found. The DNA sequence of the cloned mouse DNA shows great homology (66-90%) with other mouse hsp70 genes and somewhat less homology (50",) with E. coli hsp70 gene (dnak). With the exception of one amino acid, the protein sequence deduced from the CDNA is identical to the mouse that shock cognate protein 70 (hsc70) that is constitutivelv expressed at normal temperature. The result suggests that the cloned CDNA encodes a hsc70 family rather than a heatinducible family.mily.

  • PDF

Healthcare IoT: DNA Watch (헬스케어 IoT: DNA 시계)

  • Kim, Jeong Su;Lee, Moon Ho;Park, Daechul
    • Journal of Engineering Education Research
    • /
    • v.21 no.3
    • /
    • pp.66-75
    • /
    • 2018
  • This paper is the second part of the January 2018 issue of the Korean Society for Engineering Education, The "Equilibrium and Unbalance Analysis of Taegeuk Pattern DNA Matrix Codes," and is an extension of the paper published in the IoT Section of the 2017 Summer Conference in Jeju. In this paper, we have reviewed the history of what is life, and 5G Mobile communication: with IoT followed by recent research on influenza RNA gene mutation and DNA mutation variants, and the insights of Watson and Crick. Inspired by a single Franklin DNA X-ray diffraction photograph, they received the Nobel Prize for the Nature publication of DNA that has three patterns and regular repeatability. Professor MoonHo Lee has solved the three patterns in Diagonal, Left to Right, and Vertical matrices in a 2x2 matrix[CU; AG] and A = T = U = 30% C = G = 20%. We also proposed DNA Watch. This is the Healthcare IoT, which is seen by the DNA Watch on the wrist, the type of Tai Chi pattern of the body, and is immediately connected to the smartphone and delivered to the doctor.

Isolation and Characterization of a Pollen-specific cDNA Clone from Easter Lily

  • Kim, Seong-Ryong;An, Gyu-Heung
    • Journal of Plant Biology
    • /
    • v.39 no.3
    • /
    • pp.197-202
    • /
    • 1996
  • A pollen-specific cDNA clone, LMP50, was isolated from the mature pollen cDNA library of the Easter lily. The LMP50 transcript was highly abundant in mture pollen grains but not detectable in other organs. The LMP50 cDNA clone contains 1383 nucleotides and two open reading frames. The first codes for a peptide of 15 amino acid residues. The role of this peptide is nuclear. The second encodes a protein containing 329 amino acid residues. This protein exhibited a significant homology to human tartrate-resistant acid phosphatase and porcine uteroferrin. Both of these enzymes have been suggested to play a role in iron transport. Therefore, LMP50 may act as an iron carrier protein in mature pollen grains.

  • PDF

cDNA Sequence and mRNA Expression of a Novel Peroxiredoxin from the Firefly, pyrocoelia rufa

  • Jin, Byung-Rae;Lee, Kwang-Sik;Kim, Seong-Ryul;Sohn, Hung-Dae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.4 no.2
    • /
    • pp.101-107
    • /
    • 2002
  • We describe here the cDNA sequence and mRNA expression of a novel family of the antioxidant protein, peroxiredoxin, from the firefly, Pyracoetia ruin. The 555 bp cDNA sequence codes for a 185 amino acid protein with a calculated molecular mass of approximately 21 kDa. The deduced protein of P. rufa peroxiredoxin gene contains two conserved cysteine residues. Alignment of the deduced protein of P. rufa peroxiredoxin gene showed 71.1% protein sequenceidentity to known insect Drosophila melanogaster peroxiredoxin. Northern blot analysis revealed that the P. rufa peroxiredoxin is specifically expressed in the fat body of P. rufa larvae.

An Efficient DNA Sequence Compression using Small Sequence Pattern Matching

  • Murugan., A;Punitha., K
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.281-287
    • /
    • 2021
  • Bioinformatics is formed with a blend of biology and informatics technologies and it employs the statistical methods and approaches for attending the concerning issues in the domains of nutrition, medical research and towards reviewing the living environment. The ceaseless growth of DNA sequencing technologies has resulted in the production of voluminous genomic data especially the DNA sequences thus calling out for increased storage and bandwidth. As of now, the bioinformatics confronts the major hurdle of management, interpretation and accurately preserving of this hefty information. Compression tends to be a beacon of hope towards resolving the aforementioned issues. Keeping the storage efficiently, a methodology has been recommended which for attending the same. In addition, there is introduction of a competent algorithm that aids in exact matching of small pattern. The DNA representation sequence is then implemented subsequently for determining 2 bases to 6 bases matching with the remaining input sequence. This process involves transforming of DNA sequence into an ASCII symbols in the first level and compress by using LZ77 compression method in the second level and after that form the grid variables with size 3 to hold the 100 characters. In the third level of compression, the compressed output is in the grid variables. Hence, the proposed algorithm S_Pattern DNA gives an average better compression ratio of 93% when compared to the existing compression algorithms for the datasets from the UCI repository.

Nucleotide Sequence of ${\beta}-tubulin$ Gene from the Soft Coral Scleronephthya gracillimum $(K\ddot{u}kenthal)$

  • Yum, Seung-Shic;Woo, Seon-Ock;Chang, Man;Lee, Taek-Kyun;Song, Jun-Im
    • Ocean Science Journal
    • /
    • v.40 no.1
    • /
    • pp.55-59
    • /
    • 2005
  • We cloned the complete cDNA of the ${\beta}-bubulin$ from the soft coral, Scleronephthya gracillimum $(K\ddot{u}kenthal)$ (Alcyonacea, Octocorallia, Anthozoa, Cnidaria), via the random sequencing of a cDNA library and the 5'-rapid amplification of cDNA end (RACE) technique. The full-length cDNA of the S. gracillimum ${\beta}-tubulin$ comprised 1541 bp, not including the poly $A^+$ stretch, also contained a complete open reading frame, which codes for a total of 445 amino acids. The amino acid residues 16402 appeared to be in a state of conservation in a variety of animals. Northern blot analysis clearly demonstrated that the sequence we have obtained is, indeed, the full-length cDNA of the ${\beta}-bubulin$ gene in S. gracillimum.