• 제목/요약/키워드: DNA binding activity

검색결과 433건 처리시간 0.033초

Oligomeric Structures Determine the Biochemical Characteristics of Human Nucleoside Diphosphate Kinases

  • Kim, Sun-Young;Song, Eun-Joo;Chang, Keun-Hye;Kim, Eun-Hee;Chae, Suhn-Kee;Lee, Han-Soo;Lee, Kong-Joo
    • BMB Reports
    • /
    • 제34권4호
    • /
    • pp.355-364
    • /
    • 2001
  • Major human Nucleoside diphosphate kinases (NDPKs) exist as hetero-oligomers, consisting of NDPK-A and NDPK-B, rather than homo-oligomer. To investigate their biological function depending on the oligomeric structure in vivo, we characterized the biochemical properties of cellular NDPK. Cellular NDPKs, which are made up of a unique combination of isoforms, were purified from human erythrocyte and placenta. We found that cellular NDPK and recombinant isoforms NDPKs have their own distinct biochemical properties in autophosphorylation, stability toward heat or urea, and DNA binding. Cellular NDPK was found to have unique characteristics rather than the expected additive properties of recombinant isoforms. The mutations in the dimeric interface of NDPK-B (R34G, N69H or K135L) caused defective DNA binding and simultaneously reduced the enzymatic stability These results suggest that the oligomeric interaction could play a major role in the stability of catalytic domain and might be related to the regulation of various cellular functions of NDPK.

  • PDF

누에 견사선에서 분리한 RNA binding protein-1 유전자 프로모터 분석 (Characterization of the RNA binding protein-1 gene promoter of the silkworm silk grands)

  • 최광호;김성렬;김성완;구태원;강석우;박승원
    • 한국잠사곤충학회지
    • /
    • 제52권1호
    • /
    • pp.39-44
    • /
    • 2014
  • 효율적인 형질전환 누에 시스템 구축을 위해서는 새로운 전이인자의 개발과 함께 선발을 위한 마커 유전자 및 transposase 발현을 효과적으로 조절할 수 있는 다양한 유전자 프로모터 개발이 필수적이다. 이와 관련하여 선행연구를 통해 누에 후부실샘으로부터 고발현하는 RNA binding protein-1 homologue(RBP-1) 유전자를 선발한 바 있다. 본 연구에서는 RBP-1유전자의 누에 발육시기별 및 유충 조직별 발현양상을 Northen blot hybridization 방법으로 분석한 결과, RBP-1 유전자는 유충기로부터 번데기 후기까지의 전기간에 걸쳐 발현하였으며, 두부, 표피, 중장, 지방체 및 견사선 등 실험한 모든 유충 조직에서 고발현 하는 것으로 관찰되었다. 또한, 누에 게놈 유전자은행을 제작한 후 RBP-1 cDNA 유전자를 탐침으로 5'-UTR 영역을 클로닝하고 luciferase assay 방법으로 RBP-1 유전자 프로모터의 활성을 분석하였다. 실험 결과, RBP-1 cDNA를 탐침으로 RBP-1 유전자 ORF와 5'-UTR이 포함된 약 1,660 bp 영역의 게놈 유전자를 클로닝하였다. RBP-1 유전자 프로모터 활성검정을 위해 전사 개시점(+ 30)으로부터 상류의 -740 bp 영역을 PCR로 분리한 후 pGL3 basic vector에 도입하여 luciferase 활성 측정을 위한 전이벡터, pGL-RBP1를 제작하였다. 제작된 pGL-RBP1는 곤충 세포주(Sf9)에 transfection 한 후 luciferase 발현량을 측정한 결과, 기존의 BmA3 유전자 프로모터 대비 10% 가량 높은 발현 효율을 확인할 수 있었다.

Phloroglucinol Attenuates Ultraviolet B-Induced 8-Oxoguanine Formation in Human HaCaT Keratinocytes through Akt and Erk-Mediated Nrf2/Ogg1 Signaling Pathways

  • Piao, Mei Jing;Kim, Ki Cheon;Kang, Kyoung Ah;Fernando, Pincha Devage Sameera Madushan;Herath, Herath Mudiyanselage Udari Lakmini;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • 제29권1호
    • /
    • pp.90-97
    • /
    • 2021
  • Ultraviolet B (UVB) radiation causes DNA base modifications. One of these changes leads to the generation of 8-oxoguanine (8-oxoG) due to oxidative stress. In human skin, this modification may induce sunburn, inflammation, and aging and may ultimately result in cancer. We investigated whether phloroglucinol (1,3,5-trihydroxybenzene), by enhancing the expression and activity of 8-oxoG DNA glycosylase 1 (Ogg1), had an effect on the capacity of UVB-exposed human HaCaT keratinocytes to repair oxidative DNA damage. Here, the effects of phloroglucinol were investigated using a luciferase activity assay, reverse transcription-polymerase chain reactions, western blot analysis, and a chromatin immunoprecipitation assay. Phloroglucinol restored Ogg1 activity and decreased the formation of 8-oxoG in UVB-exposed cells. Moreover, phloroglucinol increased Ogg1 transcription and protein expression, counteracting the UVB-induced reduction in Ogg1 levels. Phloroglucinol also enhanced the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) as well as Nrf2 binding to an antioxidant response element located in the Ogg1 gene promoter. UVB exposure inhibited the phosphorylation of protein kinase B (PKB or Akt) and extracellular signal-regulated kinase (Erk), two major enzymes involved in cell protection against oxidative stress, regulating the activity of Nrf2. Akt and Erk phosphorylation was restored by phloroglucinol in the UVB-exposed keratinocytes. These results indicated that phloroglucinol attenuated UVB-induced 8-oxoG formation in keratinocytes via an Akt/Erk-dependent, Nrf2/Ogg1-mediated signaling pathway.

$Cu^{2+}$-Anthraquinone Complexes : Formation, Interaction with DNA, and Biological Activity

  • Ko, Thong-Sung;Maeng, Hack-Young;Park, Mi-Kyeong;Park, Il-Hyun;Park, In-Sang;Kim, Byoung-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • 제15권5호
    • /
    • pp.364-368
    • /
    • 1994
  • Growth inhibition potency of the anthraquinones, anthraquinone-1,5-disulfonic acid and carminic acid, for Sarcoma 180 and L1210 leukemia cells in vivo and in vitro, was induced by the divalent transition metal ion, $Cu^{2+}$. On the other hand spectroscopic titration data show that the anthraquinone drugs form $Cu2^+$ chelate complexes (carminic acid : $Cu^{2+}$ = 1 : 6; anthraquinone-1,5-disulfonic acid : $Cu^{2+}$ = 1 : 3). Furthermore the $Cu^{2+}$-drug complexes associate with DNA to form the $Cu^{2+}$-anthraquinone-DNA ternary complexes. The formation of the complexes was further supported by the $H_2O_2-dependent$ DNA degradation, which can be inhibited by ethidium bromide, caused by the $Cu^{2+}$-drug complexes. It is likely that the $Cu^{2+}$-mediated cytotoxicity of the anthraquinone drugs is related with the $Cu^{2+}-mediated$ binding of the anthraquinone drugs to DNA and DNA degradation.

골아세포의 IGF-I 유전자 발현 및 세포증식에 대한 1,25-dihydroxyvitamin $D_3$의 영향 (The Effects of 1,25- Dihydroxyvitamin $D_3$ on Expression of IGF-I Gene and Cellular Proliferation in MC3T3-E1 Cells)

  • 최희동;이재목;서조영
    • Journal of Periodontal and Implant Science
    • /
    • 제30권1호
    • /
    • pp.39-52
    • /
    • 2000
  • Polypeptide growth factor belong to a class of potent biologic mediator which regulate cell differentiation, proliferation, migration and metabolism. 1,25-dihydroxyvitamin $D_3$ decrease cell proliferation, and stimulate alkaline phosphatase activity which express in osteoblast during cell differentiation period. IGF-I is known to stimulate cell proliferation and differentiation too. 1,25-dihydroxyvitamin $D_3$ is known to increase IGF-I binding sites and IGF binding protein which inhibite the effect of IGF. The purpose of this study is to evaluate potential role of IGF-I as mediator that control the action of 1,25-dihydroxyvitamin $D_3$. MC3T3-E1 cell were seeded $5{\times}10^5/ml$ at 100mm culture plate in ${\alpha}-MEM$ containing 10% fetal bovine serum. After 48 hour incubation period, medium were changed ${\alpha}-MEM$ containing 5% fetal bovine serum. After 24 hours, $10^{-9}M$ 1,25-dihydroxyvitamin $D_3$ added. Total mRNA was extracted at 0, 6, 24, 48, 72 hour. PRPCR method was programed for the detection of IGF-I mRNA. In the both groups of 1,25-dihydroxy vitamin $D_3$ treated and control, alternative splicing form of IGF-I, IGF-IA and IGF-IB were expressed. In the 1,25-dihydroxyvitamin $D_3$ treated group, IGF-I mRNA expression was matained until 24 hour, there after expression was decresed. MC3T3-E1 cell were seeded $2.5{\times}10^4/ml$ at 24well plate in ${\alpha}-MEM$ containing 10% fetal bovine serum. After 48 hour incubation period, medium were changed ${\alpha}-MEM$ containing 3% fetal bovine serum. After 24 hours, $10^{-9}M$ 1,25-dihydroxyvitamin $D_3$ and 10 ng/ml IGF-I were added separately or together. Cell were cultured for 1 and 3 days, $2{\mu}Ci/ml\;[^3H]$ -thymidine was added for the last 24h of culture of each days. ${[^3H]}$-thymidine incorporation in to DNA was measured and expressed counter per minute(CPM). DNA synthetic activity was significantly decreased by 1,25-dihydroxyvitamin $D_3$ both at 1 day and 3 day, and in the combination group of 1,25-dihydroxyvitamin $D_3$ and IGF-I, DNA synthetic activity was also decreased both at 1 day and 3 days. IGF-I did not affect the DNA synthetic activity compared to control group both at 1 day and 3 day. From the above results, 1,25-dihydroxyvitamin $D_3$ was potent inhibitor of cell proliferaton in MC3T3-E1 cells. It assumed that the effect of 1,25-dihydroxyvitamin $D_3$ on osteoblast proliferation may be mediated in part by decreased level of IGF-I.

  • PDF

Human Estrogen Receptor Ligand Binding Domain (hER LBD)과 Co-activator로 구성된 효모 Two-Hybrid System을 이용한 내분비계장애물질 검출계의 구축 (Construction of the Detection System of Endocrine Disrupters using Yeast Two-Hybrid System with Human Estrogen Receptor ligand Binding Domain and Co-activators)

  • 이행석;조은민;류재천
    • 한국환경성돌연변이발암원학회지
    • /
    • 제22권3호
    • /
    • pp.175-182
    • /
    • 2002
  • Endocrine disruptors (EDs) are the chemicals that affect endocrine systems through activation or inhibition of steroid hormone response. It is necessary to have a good system to evaluate rapidly and accurately endocrine-disrupting activities of suspected chemicals and their degradation products. The key targets of EDs are nuclear hormone receptors, which bind to steroid hormones and regulate their gene transcription. We constructed a co-expression system of Gal4p DNA binding domain (DBD)- ligand binding domain of human estrogen receptor $\alpha$ or $\beta$, and Gal4p transactivation domain (TAD)-co-activator AIB-1, SRC-1 or TIF-2 in Saccharomyces cerevisiae with a chromosome-integrated lacZ reporter gene under the control of CYC1 promoter and Gal4p binding site (GAL4 upstream activating sequence, GAL4$_{UAS}$). Expression of this reporter gene was dependent on the presence of estrogen or EDs in the culture medium. We found that the two-hybrid system with combination of the hER$\beta$ LBD and co-activator SRC-1 was most effective in the xenoestrogen-dependent induction of reporter activity. The extent of transcriptional activation by those chemicals correlated with their estrogenic activities measured by other assay systems, indicating that this assay system is efficient and reliable for measuring estrogenic activity. The data in this research demonstrated that the yeast detection system using steroid hormone receptor and co-activator is a useful tool for identifying chemicals that interact with steroid receptors.s.

  • PDF

Interaction of Resveratrol and Genistein with Nucleic Acids

  • Usha, Subbiah;Johnson, Irudayam Maria;Malathi, Raghunathan
    • BMB Reports
    • /
    • 제38권2호
    • /
    • pp.198-205
    • /
    • 2005
  • Resveratrol (RES) and genistein (GEN) are the dietary natural products known to possess chemopreventive property and also the ability to repair DNA damage induced by mutagens/carcinogens. It is believed that the therapeutic activity of these compounds could be primarily due to their interaction with nucleic acids but detailed reports are not available. We here explore the interaction of these drugs with nucleic acids considering DNA and RNA as a potential therapeutic target. The interaction of RES and GEN has been analysed in buffered solution with DNA [saline sodium citrate (SSC)] and RNA [tris ethylene diammine tetra acetic acid (TE)] using UV-absorption and Fourier transform infrared (FTIR) spectroscopy. The UV analysis revealed lesser binding affinity with nucleic acids at lower concentration of RES (P/D = 5.00 and 10.00), while at higher drug concentration (P/D = 0.75, 1.00 and 2.50) hyperchromic effect with shift in the ${\lambda}_{max}$ is noted for DNA and RNA. A major RES-nucleic acids complexes was observed through base pairs and phosphate backbone groups with K = $35.782\;M^{-1}$ and K = $34.25\;M^{-1}$ for DNA-RES and RNA-RES complexes respectively. At various concentrations of GEN (P/D = 0.25, 0.50, 0.75, 1.00 and 2.50) hyperchromicity with shift in the ${\lambda}_{max}$ from 260 $\rightarrow$ 263 om and 260 $\rightarrow$ 270 nm is observed for DNA-GEN and RNA-GEN complexes respectively. The binding constant (from UV analysis) for GEN-nucleic acids complexes could not be obtained due to GEN absorbance overlap with that of nucleic acids at 260 nm. Nevertheless a detailed analysis with regard to the interaction of these drugs (RES/GEN) with DNA and RNA could feasibly be understood by FTIR spectroscopy. The NH band of free DNA and RNA which appeared at $3550-3100\;cm^{-1}$ and $3650-2700\;cm^{-1}$ shifted to $3450-2950\;cm^{-1}$ and $3550-3000\;cm^{-1}$ in DNA-RES and RNA-RES complexes respectively. Similarly shifts corresponding to $3650-3100\;cm^{-1}$ and $3420-3000\;cm^{-1}$ have been observed in DNA-GEN and RNA-GEN complexes respectively. The observed reduction in NH band of free nucleic acids upon complexation of these drugs is an indication of the involvement of the hydroxyl (OH) and imino (NH) group during the interaction of the drugs and nucleic acids (DNA/RNA) through H-bonded formation. The interaction of RES and GEN with bases appears in the order of G $\geq$ T > C > A and A > C $\geq$ T > G. Further interaction of these natural compounds with DNA and RNA is also supported by changes in the vibrational frequency (shift/intensity) in symmetrical and asymmetrical stretching of aromatic rings of drugs in the complex spectra. No appreciable shift is observed in the DNA and RNA marker bands, indicating that the B-DNA form and A-family conformation of RNA are not altered during their interaction with RES and GEN.

Characterization of a Positive Regulatory cis-Element and Transacting Factors for the Hepatitis B Viral Pregenomic Promoter

  • Choi, Cheol-Yong;Park, Geon-Tae;Rho, Hyune-Mo
    • BMB Reports
    • /
    • 제29권2호
    • /
    • pp.156-162
    • /
    • 1996
  • Transcription of hepatitis B viral pregenomic promoter is known to be regulated mainly by the combined interaction of enhancers I, II and the intervening regulatory sequences between the two enhancers. A positive regulatory element was identified by serial deletion and measuring the linked chloramphenicol acetyltransferase (CAT) activities, which overlapped with the 5' region of the X open reading frame. When the positive regulatory element was inserted upstream of the SV40 early promoter, it elevated SV40 promoter activity in HepG2 cells. Two cellular proteins of 110 (p110) and 33 (p33) kDa interacted with the positive element and both of them were present in the nucleus, but p110 also existed in the cytoplasm in phosphorylated form. Dephosphorylation of p110 by acid phosphatase enhanced the DNA-binding activity of p110. The p33 could bind to single-strand DNA specifically as well as to double-strand DNA.

  • PDF

RAW264.7 대식세포에서 MAPK 및 NF-κB 신호전달 경로 억제를 통한 황기 및 지치 복합물의 항염증 효과 (Anti-inflammatory effect of a mixture of Astragalus membranaceus and Lithospermum erythrorhizon extracts by inhibition of MAPK and NF-κB signaling pathways in RAW264.7 cells)

  • 최두진;김금숙;최보람;이영섭;한경숙;이동성;이대영
    • Journal of Applied Biological Chemistry
    • /
    • 제63권4호
    • /
    • pp.421-428
    • /
    • 2020
  • 본 연구는 황기와 지치 복합물인 ALM16이 lipopolysaccharide 처리에 의해 자극된 RAW264.7 대식세포의 염증반응에 미치는 영향에 대하여 조사하였다. ALM16은 RAW264.7 대식세포에 대하여 최대 200 ㎍/mL의 농도까지 독성은 보이지 않았다. 항염증 활성을 검정하기 위해 nitric oxide (NO), prostaglandin E2 (PGE2) 및 pro-inflammatory cytokines 생성량을 측정한 결과, ALM16은 각각의 생성량을 농도의존적으로 감소시켰다. 또한 ALM16은 NO와 PGE2 생성에 관여하는 inducible nitric oxide synthase (iNOS)와 cyclooxygenase-2 (COX-2)의 단백질 발현을 억제하였다. 한편, 항염증 활성 조절 기전을 확인하기 위하여 NK-κB의 핵으로의 이동과 DNA-binding activity 및 MAPK 신호전달 경로에 대한 ALM16의 영향을 확인한 결과, ALM16은 NF-κB의 핵으로 이동과 DNA-binding activity를 유의적으로 억제하였으며, JNK와 ERK 특이적으로 인산화를 억제함으로써 MAPK 신호전달 경로 활성을 억제하였다. 이러한 결과를 종합하여 볼 때 ALM16이 MAPK와 NF-κB의 신호전달 경로 억제를 통한 iNOS와 COX-2의 발현을 조절하고, 이로 인하여 NO, PGE2 및 pro-inflammatory cytokines의 생성이 감소하여 염증 반응을 조절하는 능력이 있는 것으로 판단된다.

UV에 의해 손상된 DNA 회복에 미치는 cobaltous chloride의 효과 (Effect of Cobaltous Chloride on the Repair of UV-induced DNA Damage)

  • 김국찬;김영진;이강석
    • Journal of Radiation Protection and Research
    • /
    • 제20권2호
    • /
    • pp.71-78
    • /
    • 1995
  • 본 연구에서는 유전자 손상회복에 관여하는 단백질을 이용하여 돌연변이 생성을 억제시키는 물질로서 알려진 cobaltous chloride가 유전자 손상회복에 미치는 영향을 연구하므로서 방사선으로 인한 손상방지 및 방사선 방어효과에 대한 적용가능성을 평가하였다. Cobaltous chloride가 RecA 단백질의 기능에 미치는 영향을 조사한 결과 RecA 단백질에 의한 DNA strand exchange 반웅에 있어 cobaltous chloride 처리로 RecA 단백질이 $_{ss}DNA$로 부터 SSB 단백질과 더 효과적으로 경쟁함으로써 안정된 $RecA-_{ss}DNA$ complex의 형성을 유도하고, 증가된 ATPase활성에 의한 ATP 가수분해로 손상된 DNA의 회복이 촉진될 수 있다는 사실을 입증 해주고 있다. 또한 RecA단백질은 UV에 의해 손상된 supercoiled DNA에 더 효과적으로 결합됨이 관찰되었으며 UV 선량과도 상관관계가 있음을 확인하였다. 따라서 이와 같은 연구결과들은 방사선으로 인한 유전적인 손상방지 및 방사선 방어효과에 관한 연구에 적용될 수 있을 것으로 기대된다.

  • PDF