• Title/Summary/Keyword: DNA Repair

Search Result 573, Processing Time 0.026 seconds

Current Pharmacogenetic Approach for Oxaliplatin-induced Peripheral Neuropathy among Patients with Colorectal Cancer: A Systematic Review (대장암 환자의 옥살리플라틴(oxaliplatin) 유도 말초신경병증에 대한 약물유전학적 접근: 체계적 문헌고찰)

  • Ahn, Soojung;Choi, Soyoung;Jung, Hye Jeong;Chu, Sang Hui
    • Journal of Korean Biological Nursing Science
    • /
    • v.20 no.2
    • /
    • pp.55-66
    • /
    • 2018
  • Purpose: Peripheral neuropathy is common among colorectal cancer (CRC) patients who undergo oxaliplatin-based (OXL) chemotherapy. A pharmacogenetic approach can be used to identify patients at high-risk of developing severe neuropathy. This type of approach can also help clinicians determine the best treatment option and prevent severe neurotoxicity. The purpose of this study is to investigate the evidence of pharmacogenetic markers for OXL-induced peripheral neuropathy (OXIPN) in patients with CRC. Methods: A systematic literature search was conducted using the following databases up to December 2017: Pubmed, EMBASE, and CINAHL. We reviewed the genetic risk factors for OXIPN in observational studies and randomized controlled clinical trials (RCTs). All processes were performed independently by two reviewers. Results: Sixteen studies published in English between 2006 and 2017 were included in this review. A genome-wide association approach was used in one study and various candidate genes were tested, based on their functions (e.g., DNA damage or repair, ion channels, anti-oxidants, and nerve growth etc.). The genes associated with incidence or severity of OXIPN were ABCG2, GSTP1, XRCC1, TAC1, and ERCC1. Conclusion: This study highlighted the need and the importance of conducting pharmacogenetic studies to generate evidence of personalized OXIPN symptoms management. Additional studies are warranted to accelerate the tailored interventions used for OXIPN in patients with CRC (NRF-2014R1A1A3054386).

Correction: Ethanolic Extract of Marsdenia condurango Ameliorates Benzo[a]pyrene-induced Lung Cancer of Rats -Condurango Ameliorates BaP-induced Lung Cancer in Rats-

  • Sikdar, Sourav;Mukherjee, Avinaba;Khuda-Bukhsh, Anisur Rahman
    • Journal of Pharmacopuncture
    • /
    • v.18 no.2
    • /
    • pp.86-87
    • /
    • 2015
  • Objectives: Condurango is widely used in various systems of complementary and alternative medicine (CAM) against oesophageal and stomach ailments including certain types of cancer. However, until now no systematic study has been conducted to verify its efficacy and dose with proper experimental support. Therefore, we examined if ethanolic extract of Condurango could ameliorate benzo[a]pyrene (BaP)-induced lung cancer in rats in vivo to validate its use as a traditional medicine. Methods: After one month of scheduled BaP feeding (50 mg/kg body-weight), lung cancer developed after four months. BaP-intoxicated rats were then treated with Condurango (0.06 mL) twice daily starting at the end of the four months for an additional one, two and three months, respectively. Effects of Condurango were evaluated by analyzing lung histology, reactive oxygen species (ROS) and antioxidant biomarkers, DNA-fragmentation, RT-PCR (Reverese Transcriptase-Polymerase Chain Reaction), ELISA (Enzyme linked immunosorbent assay) and western blot of several apoptotic signalling markers and comparing the results against those obtained for controls. Results: A histological study revealed gradual progress in lung tissue-repair activity in Condurango-fed cancer-bearing rats, showing gradual tissue recovery after three months of drug administration. Condurango has the capacity to generate ROS, which may contribute to a reduction in anti-oxidative activity and to an induction of oxidative stress-mediated cancer-cell death. Condurango-activated pro-apoptotic genes (Bax, caspase-3, caspase-9, p53, cytochrome-c, apaf-1, ICAD and PARP) and down-regulated antiapoptotic-Bcl-2 expression were noted both at mRNA and protein levels. Studies on caspase-3 activation and PARP cleavage by western blot analysis revealed that Condurango induced apoptosis through a caspase-3-dependent pathway. Conclusions: The anticancer efficacy of an ethanolic extract of Condurango for treating BaP-induced lung cancer in rats lends support for its use in various traditional systems of medicine.

Crystal Structure of Histidine Triad Nucleotide-Binding Protein from the Pathogenic Fungus Candida albicans

  • Jung, Ahjin;Yun, Ji-Sook;Kim, Shinae;Kim, Sang Ryong;Shin, Minsang;Cho, Dong Hyung;Choi, Kwang Shik;Chang, Jeong Ho
    • Molecules and Cells
    • /
    • v.42 no.1
    • /
    • pp.56-66
    • /
    • 2019
  • Histidine triad nucleotide-binding protein (HINT) is a member of the histidine triad (HIT) superfamily, which has hydrolase activity owing to a histidine triad motif. The HIT superfamily can be divided to five classes with functions in galactose metabolism, DNA repair, and tumor suppression. HINTs are highly conserved from archaea to humans and function as tumor suppressors, translation regulators, and neuropathy inhibitors. Although the structures of HINT proteins from various species have been reported, limited structural information is available for fungal species. Here, to elucidate the structural features and functional diversity of HINTs, we determined the crystal structure of HINT from the pathogenic fungus Candida albicans (CaHINT) in complex with zinc ions at a resolution of $2.5{\AA}$. Based on structural comparisons, the monomer of CaHINT overlaid best with HINT protein from the protozoal species Leishmania major. Additionally, structural comparisons with human HINT revealed an additional helix at the C-terminus of CaHINT. Interestingly, the extended C-terminal helix interacted with the N-terminal loop (${\alpha}1-{\beta}1$) and with the ${\alpha}3$ helix, which appeared to stabilize the dimerization of CaHINT. In the C-terminal region, structural and sequence comparisons showed strong relationships among 19 diverse species from archea to humans, suggesting early separation in the course of evolution. Further studies are required to address the functional significance of variations in the C-terminal region. This structural analysis of CaHINT provided important insights into the molecular aspects of evolution within the HIT superfamily.

Checkpoint-inhibition in ovarian cancer: rising star or just a dream?

  • Pietzner, Klaus;Nasser, Sara;Alavi, Sara;Darb-Esfahani, Silvia;Passler, Mona;Muallem, Mustafa Zelal;Sehouli, Jalid
    • Journal of Gynecologic Oncology
    • /
    • v.29 no.6
    • /
    • pp.93.1-93.11
    • /
    • 2018
  • The introduction of checkpoint inhibitors revolutionized immuno-oncology. The efficacy of traditional immunotherapeutics, like vaccines and immunostimulants was very limited due to persistent immune-escape strategies of cancer cells. Checkpoint inhibitors target these escape mechanisms and re-direct the immune system to anti-tumor toxicity. Phenomenal results have been reported in entities like melanoma, where no other therapy was able to demonstrate survival benefit, before the introduction of immunotherapeutics. The first experience in ovarian cancer (OC) was reported for nivolumab, a fully human anti-programmed cell death protein 1 (PD1) antibody, in 2015. While the data are extraordinary for a mono-immunotherapeutic agent and very promising, they do not match up to the revolutionary results in entities like melanoma. The key to exceptional treatment response in OC, could be the identification of the most immunogenic patients. We hypothyse that BRCA mutation could be a predictor of improved response in OC. The underlying DNA-repair-deficiancy should result in increased immunogenicity because of higher mutational load and more neoantigen presentation. This hypothesis was not tested to date and should be subject to future trials. The present article gives an overview of the immunologic background of checkpoint inhibition (CI). It presents current data on nivolumab and other checkpoint-inhibitors in solid tumors and OC specifically and depicts important topics in the management of this novel substance group, such as side effect control, diagnostic PD-1/programmed cell death-ligand 1 (PD-L1) expression assessment and management of pseudoprogression.

Pathological Impact on the Phyllosphere Microbiota of Artemisia argyi by Haze

  • Zhang, Yu-Zhu;Jiang, De-Yu;Zhang, Chi;Yang, Kun;Wang, Huai-Fu;Xia, Xiu-Wen;Ding, Wei-Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.4
    • /
    • pp.510-519
    • /
    • 2021
  • The pathological impact of haze upon the phyllosphere microbiota awaits investigation. A moderate degree of haze environment and a clean control were selected in Chengdu, China. Artemisia argyi, a ubiquitously distributed and extensively applied Chinese herb, was also chosen for experiment. Total genome DNA was extracted from leaf samples, and for metagenome sequencing, an Illumina HiSeq 2500 platform was applied. The results showed that the gene numbers of phyllosphere microbiota derived from haze leaves were lower than those of the clean control. The phyllosphere microbiota derived from both haze and clean groups shared the same top ten phyla; the abundances of Proteobacteria, Actinomycetes and Anorthococcuso of the haze group were substantially increased, while Ascomycetes and Basidiomycetes decreased. At the genus level, the abundances of Nocardia, Paracoccus, Marmoricola and Knoelia from haze leaves were markedly increased, while the yeasts were statistically decreased. KEGG retrieval demonstrated that the functional genes were most annotated to metabolism. An interesting find of this work is that the phyllosphere microbiota responsible for the synthesis of primary and secondary metabolites in A. argyi were significantly increased under a haze environment. Relatively enriched genes annotated by eggNOG belong to replication, recombination and repair, and genes classified into the glycoside hydrolase and glycosyltransferase enzymes were significantly increased. In summary, we found that both structure and function of phyllosphere microbiota are globally impacted by haze, while primary and secondary metabolites responsible for haze tolerance were considerably increased. These results suggest an adaptive strategy of plants for tolerating and confronting haze damage.

Comparisons of UCP2 Polymorphism, Dietary Habits, and Obesity Index in Normal and Obese University Students (정상체중과 비만인 대학생의 UCP 2 유전자 다형성, 식습관, 비만도 및 체성분의 비교 연구)

  • Ahn, Myoung-Soo;Chang, In-Youb;Kim, Kyung-Hee
    • Journal of the Korean Society of Food Culture
    • /
    • v.22 no.4
    • /
    • pp.404-413
    • /
    • 2007
  • This study was carried out to compare UCP2 polymorphism, dietary habits, and obesity index in normal and obese university students. The survey was carried out using self-questionnaires collected from the 126 normal and 60 obese university students. The results are summarized as follows. Breakfast was skipped in 43.7% of normal and 49.3% of obesity students and it appeared obese students eat faster than normal students. The percentage of weight control experience were 49.2 and 71.0 in the normal and obese students, respectively. Blood levels of lipid profiles(triglyceride, LDL cholesterol, and HDL cholesterol), hemoglobin, AST and ALT were anaylzed. In UCP2 genes, the frequency of deletion homozygote(DD) was 71.5%, heterozygote(DI) was 26.9% and insertion homozygote(II) was 1.6%. Plasma levels of triglyceride, total cholesterol, LDL cholesterol, and HDL cholesterol of normal students were 79.06, 172.25, 100.86 and 57.03 mg/dl, and those of obese students were 93.06, 173.22, 101.22 and 54.39 mg/dl, respectively. Blood parameters were in normal range in both group. Plasma triglyceride, total cholesterol and LDL cholesterol levels of obese students were higher than those of normal students. On the other hand, plasma HDL cholesterol levels of obese students were lower than those of normal students. Plasma levels of AST and ALT were in normal range in both group. However, AST and ALT levels of obese students were higher than that of normal students. Thus, it was recommended for them to have a nutritional education program to improve their dietary and living habits for obese students’health. Nutritional education program should also be organized practically and systematically.

Paraquat-Induced Apoptotic Cell Death in Lung Epithelial Cells (폐상피세포에서 Paraquat에 의한 아포프토시스에 관한 연구)

  • Song, Tak Ho;Yang, Joo Yeon;Jeong, In Kook;Park, Jae Seok;Jee, Young Koo;Kim, Youn Seup;Lee, Kye Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.61 no.4
    • /
    • pp.366-373
    • /
    • 2006
  • Background: Paraquat is extremely toxic chemical material, which generates reactive oxygen species (ROS), causing multiple organ failure. In particular, paraquat leads to irreversible progressive pulmonary fibrosis. Exaggerated cell deaths exceeding the normal repair of type II pneumocytes leads to mesenchymal cells proliferation and fibrosis. This study examined the followings; i) whether or not paraquat induces cell death in lung epithelial cells; ii) whether or not paraquat-induced cell deaths are apoptosis or necrosis; and iii) the effects of N-acetylcysteine, dexamethasone, and bcl-2 on paraquat-induced cell deaths. Methods: A549 and BEAS-2B lung epithelial cell lines were used. The cell viability and apoptosis were evalluated using a MTT assay, Annexin V staining was monitored by fluorescence microscopy, The level of bcl-2 inhibition was examined by establishing stable A549 pcDNA3-bcl-2 cell lines throung the transfection of pcDNA3-bcl-2 with the mock. Results: Paraquat decreased the cell viability in A549 and BEAS-2B cells in a dose and time dependent manner. The Annexin V assay showed that apoptosis was the type of paraquat-induced cell death. Paraquat-induced cell deaths was significantly inhibited by N-acetylcysteine, dexamethasone, and bcl-2 overexpression. The cell viability of A549 cells treated with N-acetylcysteine, and dexamethasone on the paraquat-induced cell deaths were increased significantly by 10 ~ 20%, particularly at high doses. In addition, the cell viability of A549 pcDNA3-bcl-2 cells overexpressing bcl-2 was significantly higher than the untransfected A549 cells. Conclusion: Paraquat induces apoptotic cell deaths in lung epithelial cells in a dose and time dependent manner. The paraquat-induced apoptosis of lung epithelial cells might occur through the mitochondrial pathway.

Mutagenicity of Chloropropanols in SOS Chromotest and Ames Test (SOS Chromotest 및 Ames test에서의 Chloropropanol류의 변이원성)

  • Song, Geun-Seoup;Han, Sang-Bae;Uhm, Tae-Boong;Choi, Dong-Seong
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.1464-1469
    • /
    • 1998
  • SOS Chromotest and Ames test were carried out to evaluate the mutagenicity of three chloropropanols. In the SOS Chromotest, 3-monochloro-l,2-propanediol (3-MCPD) and 2,3-dichloro-1-propanol (2,3-DCP) except for 1,3-dichloro-2-propanol (1,3-DCP) induced SOS response in Escherichia coli PQ37 with dose-response relationship and 2,3-DCP was far more genotoxic than 3-MCPD. The genotoxic activities of both compounds, however, were very lower in E. coli PQ35 (PQ37 $uvrA^+)$ as compared to them in E. coli PQ37, whereas much higher in E. coli PQ243 (PQ37 tagA alkA). These results indicate that there are at least two types of DNA lesions caused by these compounds; one is a excision-repairable and the other is 3-methyladenine or any similar lesion which is excision-unrepairable and can induce adaptive response. In Salmonella typhimurium TA100, all the compounds showed strong mutagenicities, establishing the following genotoxic order: 2,3-DCP>3-MCPD>1,3-DCP. But the mutagenic activities were very low in S. typhimurium TA98 and TA97a. These results suggest that the mutation by chloropropanols can be induced by the DNA lesions causing base-pair substitutions. From the result that the mutagenicities of 3-MCPD and 2,3-DCP in S. typhimurium TA1535 were very low as compared to those in S. typhimurium TA100, it was appeared that the mutations by both compounds necessitate error-prone SOS repair.

  • PDF

Gene Expression Profiles in Cervical Cancer with Radiation Therapy Alone and Chemo-radiation Therapy (자궁경부암의 방사선치료 및 방사선항암화학 병용치료에 따른 유전자발현 조절양상)

  • Lee Kyu Chan;Kim Meyoung-kon;Kim Jooyoung;Hwang You Jin;Choi Myung Sun;Kim Chul Yong
    • Radiation Oncology Journal
    • /
    • v.21 no.1
    • /
    • pp.54-65
    • /
    • 2003
  • Purpose : To analyze the gene expression Profiles of uterine ceulcal cancer, and its variation after radiation therapy, with or without concurrent chemotherapy, using a CDNA microarray. Materials and Methods :Sixteen patients, 8 with squamous ceil carcinomas of the uterine cervix, who were treated with radiation alone, and the other 8 treated w14h concurrent chemo-radiation, were Included in the study. Before the starling of the treatment, tumor biopsies were carried out, and the second time biopsies were peformed after a radiation dose of 16.2$\~$27 Gy. Three normal cervix tissues were used as a control group. The microarray experiments were peformed with 5 groups of the total RNAs extracted individually and then admixed as control, pre-radiation therapy alone, during-radiation therapy alone, pre-chemoradiation therapy, and during-chemoradlation therapy. The 33P-iabeled CDNAS were synthesized from the total RNAs of each group, by reverse transcription, and then they were hybridized to the CDNA microarray membrane. The gene expression of each microarrays was captured by the intensity of each spot produced by the radioactive isotopes. The pixels per spot were counted with an Arrayguage, and were exported to Microsoft Excel The data were normalized by the Z transformation, and the comparisons were peformed on the Z-ratio values calculated. Results : The expressions of 15 genes, including integrin linked kinase (ILK), CDC28 protein kinase 2, Spry 2, and ERK 3, were increased with the Z-ratio values of over 2.0 for the cervix cancer tissues compared to those for the normal controls. Those genes were involved In cell growth and proliferation, cell cycle control, or signal transduction. The expressions of the other 6 genes, Including G protein coupled receptor kinase 5, were decreased with the Z-ratio values of below -2.0. After the radiation thorapy, most of the genes, with a previously Increase expressions, represented the decreased expression profiles, and the genes, with the Z-ratio values of over 2.0, were cyclic nucleotlde gated channel and 3 Expressed sequence tags (EST). In the concurrent chemo-radiation group, the genes involved in cell growth and proliferation, cell cycle control, and signal transduction were shown to have increased expressions compared to the radiation therapy alone group. The expressions of genes involved in anglogenesis (angiopoietln-2), immune reactions (formyl peptide receptor-iike 1), and DNA repair (CAMP phosphodiesterase) were increased, however, the expression of gene involved In apoptosls (death associated protein kinase) was decreased. Conclusion : The different kinds of genes involved in the development and progression of cervical cancer were identified with the CDNA microarray, and the proposed theory is that the proliferation signal stalls with ILK, and is amplified with Spry 2 and MAPK signaling, and the cellular mitoses are Increased with the increased expression oi Cdc 2 and cell division kinases. After the radiation therapy, the expression profiles demonstrated 4he evidence of the decreased cancer cell proliferation. There was no sigificant difference in the morphological findings of cell death between the radiation therapy aione and the chemo-radiation groups In the second time biopsy specimen, however, the gene expression profiles were markedly different, and the mechanism at the molecular level needs further study.

Synergistic effect of ionizing radiation and $\beta$-lapachone against tumor in vitro and in vivo

  • Park, Eun-Kyung;Kim, Young-Seok;Lee, Sang-wook;Ahn, Seung-Do;Shin, Seong-Soo;Park, Heon-Joo;Song, Chang-Won
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.80-80
    • /
    • 2003
  • ${\beta}$-lapachone(${\beta}$-Lap), a natural o-naphthoquinone, presents in the bark of the Lapacho tree. ${\beta}$-Lap is cytotoxic against a variety of human cancer cells and it potentiates the anti-tumor effect of Taxol. In addition, ${\beta}$-Lap has been reported to radiosensitize cancer cells by inhibiting the repair of radiation-induced DNA damage.In the present study, we investigated the cytotoxicity of ${\beta}$-Lap against RKO human colorectal cancer cells as well as the combined effect of ${\beta}$-LaP and ionizing radiation. An incubation of RKO cells with 5 ${\mu}$M of ${\beta}$-Lap for 4 h killed almost 90% of the clonogenic cells. An incubation of RKO cells with 5 ${\mu}$M of ${\beta}$-Lap for 4 h or longer also caused massive apoptosis. Unlike other cytotoxic agents, ${\beta}$-Lap did not increase the expression of p53 and p21 and it suppressed the NFkB expression. The expression of Caspase 9 and 3 was minimally altered by ${\beta}$-Lap. Radiation and ${\beta}$-Lap acted synergistically in inducing clonogenic cell death and apoptosis in RKO cells when ${\beta}$-Lap treatment was applied after but not before the radiation exposure of the cells. Interestingly, a 4 h treatment with 5 ${\mu}$M of ${\beta}$-Lap starting 5 h after irradiation was as effective as that starting immediately after irradiation. The mechanisms of ${\beta}$-Lap-induced cell killing is controversial but a recent hypothesis is that ${\beta}$-Lap is activated by NAD(P)H: quinone-onidoreductase (NQO1) in the cells followed by an elevation of cytosolic Ca$\^$2+/ level and activation of proteases leading to apoptosis. It has been reported that NQO1 level in cells is markedly up-regulated for longer than 10 h after irradiation. Indeed, using immunological staining of NQO1, we observed a significant elevation of NQO1 expression in RKO cells 5h after 2-4 Gy irradiation. Such a prolonged elevation of NQO1 level after irradiation may be the reasons why the ${\beta}$-Lap treatment applied S h after irradiation was as effective as that applied immediately after irradiation in killing the cells. In view of the fact that the repair of radiation-induced damage is usually completed within 1-2 h after irradiation, it is highly likely that the ${\beta}$-Lap treahment applied 5 h after irradiation could not inhibit the repair of radiation-induced damage. For in vivo study, RKO cells were injected S.C. into the hind-leg of Nu/Nu mice, and allowed to grow to 130 mm3 tumor. The mice were i.p. injected with ${\beta}$-lapachone or saline 2 h after irradiation of tumors with 10 Gy of X-rays. The radiation induced growth delay was increased by 2.4 $\mu\textrm{g}$/g of ${\beta}$-lapachone. Taken together, we may conclude that the synergistic interaction of radiation and ${\beta}$-Lap in killing cancer cells is not due to radiosensitization by ${\beta}$-Lap but to an enhancement of ${\beta}$-Lap cytotoxicity by radiation through an upregulation of NQO1. The fact that NQO1 is elevated in tumors and that radiation causes prolonged increase of the NQO1 expression may be exploited to preferentially kill tumor cells using ${\beta}$-Lap in combination with radiotherapy.

  • PDF