• Title/Summary/Keyword: DNA 손상 억제

Search Result 197, Processing Time 0.029 seconds

Antioxidative Activiry and Anticlastogeniciry of Cassia tora L. seeds Extract and its Major Component, $Nor-rubrofusarin-6-{\beta}-D-glucoside$ (결명자 추출물과 노르-루브로푸사린의 산화적 스트레스억제효과 및 항염색체손상과 효과)

  • 김수희;최재수;허문영
    • Journal of Food Hygiene and Safety
    • /
    • v.13 no.4
    • /
    • pp.394-399
    • /
    • 1998
  • 결명자의 주용성분인 노르-루브로푸사린의 함량이 높은 추출물을 얻기 위하여 결명자분말을 0~100%의 에탄올수용액으로 추출하여 고농도의 노르-루브로푸사린을 함유하는 결명자 추출물을 제조하였다. 결명자추출물과 주요 함유성분인 노르-루브로푸사린은 항산화활성과 프리라디칼소거 작용을 나타내었으며, H2O2 유도 세포독성에 대해서도 억제적으로 작용하여 cyto-protective effect를 나타내었다. 또한 DNA crosslinking agent 인 mitomycin C 유도 소핵생성에도 결명자 70% 에탄올추출물과 노르-루브로파사린이 매우 높은 억제활성을 나타내었다. 따라서 결명자 추출물과 노르-루브로푸사린은 산소라디칼들에 의한 산화적 손상 및 DNA 손상 등에 억제적으로 작용하는 기전을 활용하여 항산화성 스트레스를 통한 항노화 , 암예방제로서의 응용가능성이 높은 물질로 판단되었다.

  • PDF

Inhibitory Effect of Extract from Acanthocoris sordidus on Oxidative Damage (꽈리허리노린재(Acanthocoris sordidus) 추출물이 산화적 손상에 미치는 억제 효과)

  • Park, Young Mi;Lim, Jae Hwan;Lee, Jong Eun;Seo, Eul Won
    • Journal of Life Science
    • /
    • v.24 no.10
    • /
    • pp.1078-1084
    • /
    • 2014
  • Here, we showed that Acanthocoris sordidus extract inhibited both cell and DNA damage caused by oxidative stress. In a radical scavenging assay, the scavenging activity of the A. sordidus extract against 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radicals was 48.9% and 37.8%, respectively, that of ascorbic acid, which was used as a positive control. The ferrous iron chelating activity of the A. sordidus extract was 80.0% compared to that when ethylenediaminetetraacetic acid (EDTA) was used a control. To verify the inhibitory effect of the extract on oxidative cell damage induced by reactive oxygen species (ROS), a lipid peroxidation assay was performed. The results showed that peroxidation was completely inhibited in an extract-treated group compared to a radical-treated group. The level of p21 protein expression was 68.1% that of a control sample. The DNA cleavage-inhibiting property of the A. sordidus extract-treated group was 53.3% that of a control group. Moreover, the phosphorylation of the H2AX protein was reduced to 39.0% of that treated with radical agents, indicating that the extract might inhibit the DNA damage that causes radical oxidation. Taken together, our findings suggest that the A. sordidus extract is effective not only in repressing oxidation by free oxygen radicals and hydroxyl radicals but also in decreasing cell and DNA damage caused by oxidative stress.

A Possible Protective Role of Ginko biloba Outer Seed Coat Methanol Extracts on DNA Damage Induced by H2O2 in HaCaT Human Skin Keratinocytes (HaCaT 인간 피부 케라티노사이트에서 과산화수소 유발 DNA 손상에 대한 은행외종피 추출물의 보호효과)

  • Sim, Jae Young;Lee, Jong-Hwan
    • Journal of Life Science
    • /
    • v.29 no.10
    • /
    • pp.1164-1170
    • /
    • 2019
  • The present study was carried out to evaluate extracts of Ginko biloba's outer seed coat, their antioxidative effects, and their ability to protect against DNA damage due to hydrogen peroxide ($H_2O_2$) treatments in cultured human keratinocyte (HaCaT) cells. The bioassays applied for determining the antioxidant effects of a G. biloba outer seed coat water extract (GOSWE) and a G. biloba outer seed coat methanol extract (GOSME) included the DPPH and $H_2O_2$ radical scavenging assays. Our results revealed that GOSME had higher activity than GOSWE against $H_2O_2$ radical scavenging activity in in vitro and in vivo bioassays. Treatment with GOSME significantly increased the viability of $H_2O_2-treated$ HaCaT cells. GOSME's ability to protect against DNA damage was observed via the analysis of plasmids in vitro and genomic DNA in $H_2O_2-treated$ HaCaT cells. According to our data, GOSME is able to protect HaCaT cells from $H_2O_2-induced$ DNA damage and apoptosis by blocking cellular damage related to oxidative stress. In conclusion, our study indicated GOSME might serve as a novel agent for the treatment and prevention of skin disorders caused by oxidative stress.

Protection of ROS-induced cytotoxicity and DNA damage by the extract of Alpinia of ficinarum (양강추출물의 활성산소종 유도 세포독성과 DNA 손상에 대한 방어효과)

  • 이승철;신경승;허문영
    • Journal of Food Hygiene and Safety
    • /
    • v.17 no.2
    • /
    • pp.106-116
    • /
    • 2002
  • The 70% ethanol extract of Alpinia officinarum and its major flavonoid, galangin showed strong antioxidative effect on the lipid peroxidation of ethyl linolate with Fenton's reagent and free radical scavenging effect to DPPH radical generation. However, they did not reveal any pro-oxidant effect on bleomycin-Fe(III) dependent DNA degradation. They also showed the protective effect against $H_2O$$_2$, KO$_2$ or UV-induced cytotoxicity in mammalian cells. They also showed the suppressive effect of DNA damage induced by $H_2O$$_2$ or KO$_2$ with dose-dependent manner in single cell gel electrophoresis(SCGE) assay. On the other hand, they have an anticlastogenic effect against adriamycin-induced micronucleated reticulocyte in peripheral blood of mice. These results suggest that the mechanism of inhibition by 70% ethanol extract of Alpinia officinarum and galangin against reactive oxygen species (ROS)-induced genotoxicity or cytotoxicity is due, at least partly, to their antioxidative and free radical scavenging properties without pro-oxidant effect. All these results indicate that 70% ethanol extract of Alpinia officinarum and galangin may be useful for protection against ROS-induced cytotoxicity and DNA damage.

Inhibitory Effects of Functional Sujeonggwa (Cinnamon Drink) on Lipid Peroxidation and DNA Damage in Diet-Induced Hypercholesterolemic ApoE Knockout Mice (고콜레스테롤혈증 ApoE Knockout 마우스에서 기능성 수정과의 지질과산화 및 산화적 DNA 손상 억제 효과)

  • Park, Eunju;Baek, Aran;Kim, Mijeong;Lee, Seon Woo;Lee, Eunji;Choi, Mi-Joo;Lee, Jeehyun;Song, Yeong Ok
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.11
    • /
    • pp.1627-1634
    • /
    • 2014
  • The recipe for sujeonggwa, a Korean traditional sweet drink containing cinnamon, ginger, sugar, or honey, was modified by replacing sugar with alternative sweeteners [stevia or short-chain frutooligosaccharide (scFOS)] in order to improve the health functionality of sujeonggwa. The aim of this study was to evaluate the effects of modified sujeonggwa on lipid peroxidation and oxidized DNA damage in diet-induced hypercholesterolemic ApoE knockout mice. Hypercholesterolemia was induced in 6-week-old male mice by administration of a high cholesterol diet (1.25% cholesterol, 0.5% cholic acid, and 10% coconut oil) for 4 weeks, after which mice were divided into five groups: sucrose solution-fed control group, sujeonggwa containing sucrose group, sucrose+stevia group, sucrose+stevia+scFOS group, and commercially available sujeonggwa group as a positive control. After 6 weeks, sujeonggwa supplementation resulted in reduced hepatic thiobarbituric acid reactive substances (TBARS), regardless of sweetener type. However, reduction of hepatic TBARS by commercially available sujeonggwa was insignificant. Both endogenous and $H_2O_2$-induced DNA damage in hepatocytes and splenocytes were significantly reduced only in the sujeonggwa containing stevia group compared to the sucrose-fed control group. There were no significant effects of sujeonggwa supplementation on total radical trapping potential, lipid peroxidation, or DNA damage in blood. These results suggest that sujeonggwa has protective effects against hepatic lipid peroxidation and DNA damage in hepatocytes or splenocytes from diet-induced hypercholesterolemic ApoE knockout mice, and the type of sweetener should be modified to improve the health benefits of sujeonggwa.

Effect of Aceton Extract from Styela Clava on Oxidative DNA Damage and Anticancer Activity (미더덕 아세톤 추출물이 산화적 DNA 손상억제 및 암세포 독성에 미치는 영향)

  • Seo, Bo-Young;Jung, Eun-Sil;Kim, Ju-Young;Park, Hae-Ryong;Lee, Seung-Cheol;Park, Eun-Ju
    • Applied Biological Chemistry
    • /
    • v.49 no.3
    • /
    • pp.227-232
    • /
    • 2006
  • Styela clava (also called as rough sea squirt or leathery tunicate) is regarded as native to the northwest Pacific region including Korea and widely distributed in parts of northwestern Europe, North America and Australia. To evaluate Styela clava as a potential bioactive agent, the antioxidant activity of aceton extracts from Styela clava (whole, substance and tunic) was tested by measuring inhibitory effect of $H_2O_2$ induced DNA damage using comet assay. Also, anticancer activity on human colon cancer cell (HT-29) was investigated by MTT reduction assay. The $200\;{\mu}M$ $H_2O_2$ induced DNA damage was inhibited with Styela clava aceton extract in dose dependent manner in human leukocytes. The maximum inhibition was by 62.8, 62.1 and 78.3% at the concentration of $50\;{\mu}g/ml$ of whole, substance and tunic extracts, respectively. The aceton extracts from S. clava were also found to inhibit the growth of human colon cancer cell. The cell proliferation rates decreased to 26.9, 30.6 and 12.0% at the concentration of $500\;{\mu}g/ml$ of whole, substance and tunic extracts, respectively. These results support that aceton extracts from S. clava may be a potential candidate as a possible antimutagenic and chemotherapeutic agent.

The Role of Active Oxygen on DNA Damage by Linoleic Acid Peroxidation Products (Linoleic acid 산화생성물(酸化生成物)의 DNA손상작용에 있어서의 활성산소종(活性酸素種)의 역할)

  • Kim, Seon-Bong;Kang, Jin-Hoon;Lee, Yong-Woo;Kim, In-Soo;Park, Yeung-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.311-316
    • /
    • 1987
  • The present paper was carried out to investigate the effects of active oxygen radicals on the DNA damage by linoleic acid peroxidation by using active oxygen scavengers in a linoleic acid-DNA system. DNA was greatly damaged by linoleic acid peroxidation, and the DNA damage was inhibited by the addition of active oxygen scavengers. Among active oxygen scavengers tested, ${\alpha}-tocopherol$ and superoxide dismutase greatly inhibited the DNA damage, but catalase and tris (hydroxymethyl) aminomethane didn't show such effects. Accordingly, singlet oxygen and superoxide anion greatly affected to the DNA damage occurring during linoleic acid peroxidation, and hydrogen peroxide was shown to participate in DNA damage in the early stage of peroxidation. And, the DNA damage by active oxygen radicals was mainly induced in the early stage of linoleic acid peroxidation.

  • PDF

Effect of Cobaltous Chloride on the Repair of UV-induced DNA Damage (UV에 의해 손상된 DNA 회복에 미치는 cobaltous chloride의 효과)

  • Kim, Kug-Chan;Kim, Yung-Jin;Lee, Kang-Suk
    • Journal of Radiation Protection and Research
    • /
    • v.20 no.2
    • /
    • pp.71-78
    • /
    • 1995
  • To develop methods to reduce radiation risk and apply such knowledge to improvement of radiation protection, the effects of cobaltous chloride known as bioantimutagen on the function of E. coli RecA protein involved in the repair of DNA damage were examined. The results demonstrated two distinct effects of cobaltous chloride on the RecA protein function necessary for the strand exchange reaction. Cobaltous chloride enhanced the ability of RecA protein to displace SSB protein from single-stranded DNA and the duplex DNA-dependent ATPase activity. RecA protein was preferentially bound with UV-irradiated supercoiled DNA as compared with nonirradiated DNA The binding of RecA protein to UV-irradiated supercoiled DNA was enhanced in a dose-dependent manner. It is likely that studies on the factors affecting repair efficiency and the DNA repair proteins may provide information on the repair of ionizing radiation-induced DNA damage and the mechanism for DNA radioprotection.

  • PDF

Lipase-Inhibitory and Anti-Oxidative Activity of the Methanol Extract and the Powder of Phellinus linteus (상황버섯 자실체 메탄올 추출물과 분말의 지방소화효소 억제 및 항산화 활성)

  • Kim, Ji-Hyun;Son, In-Suk;Kim, Jong-Sang;Kim, Ki-Hoon;Kwon, Chong-Suk
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.2
    • /
    • pp.154-161
    • /
    • 2008
  • Phellinus linteus (PL) has been known to exhibit potent biological activity. The present study was designed to investigate lipase-inhibitory and anti-oxidative activity of the methanol extract and the powder of PL fruiting body. The methanol extract of PL appeared to have the inhibitory activity against pancreatic lipase with an $IC_{50}$ value of $36.3\;{\mu}g/mL$, and the scavenging activity of DPPH radical with an $IC_{50}$ value of $20.1\;{\mu}g/mL$, which was similar to that of vitamin C ($IC_{50}\;18.3\;{\mu}g/mL$). To investigate the lipase-inhibitory and anti-oxidative effect of PL on animal, Sprague-Dawley rats were fed with high-fat diet supplemented with either 2% or 5% PL powder for 8 weeks. Total food intake was significantly increased, but body weight was not changed by PL powder supplementation. However, fecal fat excretion of the experimental groups fed with the PL powder were higher than that of the control group. PL powder showed a decrease in the plasma total cholesterol, LDL-cholesterol, and the hepatic total cholesterol levels. The anti-oxidative enzyme activities were also affected by PL supplementation. Glutathione peroxidase (GSH-Px) in the plasma and liver were significantly increased by 98% and 46% in the 2% PL group, and 99% and 32% in the 5% PL group, respectively. Total superoxide dismutase (T-SOD) activity was not affected by PL supplementation. DNA damage was measured by the comet assay in the lymphocytes collected after 2 weeks, 4 weeks, and 8 weeks of feeding PL supplemented diet. Lymphocyte DNA damage was decreased in the PL supplemented group. Furthermore, PL feeding enhanced the resistance to lymphocyte DNA damage caused by an oxidant challenge with $H_2O_2$.