• Title/Summary/Keyword: DME manufacturing process

Search Result 6, Processing Time 0.021 seconds

A comparative study on the carbon dioxide removal capability between the processes using physical solvent and membrane process (이산화탄소 제거공정에서 물리 흡수제를 사용한 공정과 멤브레인을 사용한 공정 사이의 비교 연구)

  • Kang, Jinjin;Noh, Jaehyun;Ahn, June Shu;Cho, Jungho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6590-6596
    • /
    • 2013
  • Carbon dioxide should be removed to increase the productivity of dimethyl ether(DME) from the DME manufacturing process. In this study, carbon dioxide can be removed using a physical absorbent through a solvent absorption method and membrane separation method. After performing the simulation for the carbon dioxide removal process, the energy consumption of the processes was compared. Methanol was used as a physical absorbent for the rectisol process, dimethyl ethers of polyethylene glycol for the Selexol process and N-methyl pyrrolidone for the Purisol process. By performing the simulation for each process, the energy consumption was compared. The Purisol process had the lowest energy consumption, followed in order by the Selexol process, Rectisol process and Membrane process. Therefore, the Purisol process was the most suitable method for the carbon dioxide process in the DME manufacturing process.

A study on visualization about the flow mode of ER fluid using the DME (다전극을 이용한 ER유체 유동모드 가시화에 관한 연구)

  • Lee, Yuk-Hyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • A new flow mode of ER fluid available for controlling the damping force by using DME(Discrete Multi-Electrode) is presented in this study. Various characteristics about the flow of ER fluid through the experiment of ER cluster behavior visualization can be assumed. The pressure in electrode length and voltage division mode is measured. An actuator with a damping effect through DME ER damper will be developed. This damper controls the damping force by using the displacement and velocity of the plant which consists of the various electrode length and voltage modes without a controller in the real system.

Production of DME from CBM by KOGAS DME Process (KOGAS DME 공정을 이용한 CBM으로부터 DME 생산)

  • Cho, Won-Jun;Mo, Yong-Gi;Song, Taek-Yong;Lee, Hyen-Chan;Baek, Young-Soon;Denholm, Douglas;Ko, Glen;Choi, Chang-Woo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.6
    • /
    • pp.925-933
    • /
    • 2011
  • The traditional feedstock for dimethyl ether (DME) has been natural gas obtained by pipeline from a nearby natural gas or oil field. This report focuses on other feedstock: Coal bed methane (CBM). The resource availability and suitability of CBM for DME manufacturing have been investigated. CBM in a short time has become an important industry, providing an abundant clean-burning fuel and also suggesting as a feedstock for gas industry. The use of CBM will have very little impact on the KOGAS' DME process design and economics up to 50 vol% of $CO_2$ in the CBM source. Many of the CBM sources in Asia are high in $CO_2$, but pose no difficulties for the KOGAS' DME plant. Since tri-reformer requires substantial $CO_2$ in its feed, no $CO_2$ removal from the CBM feed is needed. The $CO_2$ in the CBM means that less $CO_2$ needs to be recycled from the downstream in the process.

Experimental Study of Hydrogen and Syngas Production over Ni/Ce-ZrO2/Al2O3 Catalysts with Additives (Ni/Ce-ZrO2/Al2O3 촉매의 첨가제에 따른 수소 및 합성가스 생성에 대한 실험적 연구)

  • Cho, Wonjun;Yu, Hyejin;Mo, Yonggi;Ahn, Whaseung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.2
    • /
    • pp.105-113
    • /
    • 2014
  • Performance tests on $Ni/Ce-ZrO_2/Al_2O_3$ catalysts with additives (MgO, $La_2O_3$) were investigated in the combined reforming processes (SCR, ATR, TRM) in order to produce hydrogen and carbon monoxide (it is called "syngas".). The catalyst characterization was conducted using the BET surface analyzer, X-ray diffraction (XRD), SEM, TPR and TGA. The combined reforming process was developed to adjust the syngas ratio depending on the synthetic fuel (methanol, DME and GTL) manufacturing processes. Ni-based catalysts supported on alumina has been generally recommended as a combined reforming reaction catalyst. It was found that both free NiO and complexed NiO species were responsible for the catalytic activity in the combined reforming of methane conversion, and the $Ce-ZrO_2$ binary support employed had improved the oxygen storage capacity and thermal stability. The additives, MgO and $La_2O_3$, also seemed to play an important role to prevent the formation of the carbon deposition over the catalysts. The experimental results were compared with the equilibrium data using a commercial simulation tool (PRO/II).

Membrane Process Development for $CO_2$ Separation of Flaring Gas (Flaring 가스의 $CO_2$ 분리를 위한 분리막 공정 기술개발)

  • Kim, Se Jong;Kim, Hack Eun;Cho, Won Jun;Ha, Seong Yong
    • Membrane Journal
    • /
    • v.23 no.5
    • /
    • pp.384-391
    • /
    • 2013
  • We prepared composite membrane which was made with polysulfone supported hollow fiber membrane coated with Hyflon AD to eliminate $CO_2$ gas from mixed-gases which were generated in DME manufacturing processes. The performance of module about simulated flaring gas was measured by using manufactured composite membrane. 1-stage evaluation result shows $CO_2$ concentration was below 3% at 1.2 MPa and at Stage cut 0.24 above. In addition $CO_2$ removal rate and $CH_4$ recovery rate was 80% respectively at the same condition. 2-stage evaluation result shows, when the $CO_2$ concentration of product gas was fixed at 5%, recycled $CO_2$ at stage cut 0.074 had the same concentration as the feed gas and the recovery rate of $CH_4$ was 99% at the moment.

Comparison of Characteristics of Electrodeposited Lithium Electrodes Under Various Electroplating Conditions (다양한 전착조건에서 제작된 리튬 전극의 특성 연구)

  • Lim, Rana;Lee, Minhee;Kim, Jeom-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.3
    • /
    • pp.128-137
    • /
    • 2019
  • A lithium is the lightest metal on the earth. It has some attractive characteristics as a negative electrode material such as a low reduction potential (-3.04 V vs. SHE) and a high theoretical capacity ($3,860mAh\;g^{-1}$). Therefore, it has been studied as a next generation anode material for high energy lithium batteries. The thin lithium electrode is required to maximize the efficiency and energy density of the battery, but the physical roll-press method has a limitation in manufacturing thin lithium. In this study, thin lithium electrode was fabricated by electrodeposition under various conditions such as compositions of electrolytes and the current density. Deposited lithium showed strong relationship between process condition and its characteristics. The concentration of electrolyte affects to the shape of deposited lithium particle. As the concentration increases, the shape of particle changes from a sharp edged long one to a rounded lump. The former shape is favorable for suppressing dendrite formation and the elec-trode shows good stripping efficiency of 92.68% (3M LiFSI in DME, $0.4mA\;cm^{-2}$). The shape of deposited particle also affected by the applied current density. When the amount of current applied gets larger the shape changes to the sharp edged long one like the case of the low concentration electrolyte. The combination of salts and solvents, 1.5M LiFSI + 1.5M LiTFSI in DME : DOL [1 : 1 vol%] (Du-Co), was applied to the electrolyte for the lithium deposition. The lithium electrode obtained from this electrolyte composition shows the best stripping efficiency (97.26%) and the stable reversibility. This is presumed to be due to the stability of the surface film induced by the Li-F component and the DOL effect of providing film flexibility.