• Title/Summary/Keyword: DM degradability

Search Result 138, Processing Time 0.025 seconds

Effect of Dietary Structural to Nonstructural Carbohydrate Ratio on Rumen Degradability and Digestibility of Fiber Fractions of Wheat Straw in Sheep

  • Tan, Z.-L.;Lu, D.-X.;Hu, M.;Niu, W.-Y.;Han, C.-Y.;Ren, X.-P.;Na, R.;Lin, S.-L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.11
    • /
    • pp.1591-1598
    • /
    • 2002
  • The effect of different dietary structural carbohydrate (SC) to nonstructural carbohydrate (NSC) ratios on fiber degradation, digestion, flow, apparent digestibility and rumen fluid characteristics was studied with a design using 18 wethers fitted with permanent rumen and duodenum cannulae. All sheep were divided into six groups randomly, receiving six diets with varying SC to NSC ratios. All diets contained the same proportion of wheat straw and concentrate. The dietary SC to NSC ratios were adjusted by adding cornstarch to the concentrate supplements. The duodenal and fecal flows of dry matter (DM), neutral detergent fiber (NDF), acid detergent fiber (ADF), hemicellulose (HC) and cellulose (CEL) were estimated using chromium-mordanted wheat straw as a flow marker. The degradation parameters of wheat straw DM, NDF, ADF, HC and CEL were determined by incubating the ground wheat straw in nylon bags in the rumen for different periods of time. There was no effect (p>0.05) of the different dietary SC to NSC ratios on rumen pH or $NH_3$-N, but acetate, propionate and butyrate concentrations were significantly affected (p<0.05 or p<0.01) by dietary SC to NSC ratios in the rumen fluid. When the dietary SC to NSC ratio was 2.86, the highest rumen degradability of wheat straw DM, NDF, ADF and CEL was found, but the highest apparent rumen digestibilities of DM, NDF, ADF, HC and CEL occurred at a 2.64 SC to NSC ratio. However, because of compensatory digestion in the hindgut, the apparent digestibilities of DM, NDF, ADF, HC and CEL were highest when the dietary SC to NSC ratio was 2.40. In conclusion, there is a optimal range of dietary SC to NSC ratios (between 2.86 and 2.40) that is beneficial to maximize wheat straw fiber degradation and apparent digestibility.

Relative Palatability to Sheep of Some Browse Species, their In sacco Degradability and In vitro Gas Production Characteristics

  • Abdulrazak, S.A.;Nyangaga, J.;Fujihara, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.11
    • /
    • pp.1580-1584
    • /
    • 2001
  • A study was conducted to estimate the nutritive value of some selected acacia forages using palatability index, in sacco degradability and in vitro gas production characteristics. Ten wethers (mean wt. $18{\pm}3.5kg$) were offered Acacia tortilis, Acacia nilotica, Acacia mellifera, Acacia brevispica, Acacia Senegal and Leucaena leucocephala (control) using a cafeteria system to determine the species preference by the animals. The acacia species were rich in nitrogen and showed variable palatability pattern. Significant (p<0.05) differences in relative palatability index (RPI) were detected among the species with the following ranking: brevispica > leucaena > mellifera > tortilis > Senegal > nilotica. Acacia nilotica appeared to be of low relative palatability with RPI of 24% and this was attributed to relatively high phenolic concentrations. The DM potential degradability (B) and rate of degradation (c) of the species were significantly (p<0.05) different, ranging from 40.1 to 59.1% and 0.0285 to 0.0794/h respectively. Acacia species had moderate levels of rumen undegradable protein, much higher than that in leucaena. In vitro gas production results indicated the effect of polyphenolic compounds on the fermentation rate, with lower gas production recorded from A. nilotica and tortilis. Based on RPI, A. brevispica and mellifera were superior to the rest and comparable to L. leucocephala. Long-term feeding trials are required with the superior species when used as protein supplements to poor quality diets.

In vitro Evaluation of Phalaris minor Seeds as Livestock Feed

  • Kaur, J.;Pannu, M.S.;Kaushal, S.;Wadhwa, M.;Bakshi, M.P.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.3
    • /
    • pp.363-367
    • /
    • 2006
  • The nutritional worth of Phalaris minor seeds was assessed in comparison to conventional cereal grains like maize and wheat. P. minor seeds had higher total ash and cell wall constituents as compared to wheat and maize grains. The CP content of P. minor was comparable to wheat grains but higher than maize grains. The in vitro studies revealed that the net gas production and availability of ME from P. minor was comparable to that of maize but the digestibility of nutrients was significantly (p<0.05) lower than that of conventional cereal grains. The digestion kinetic parameters for DM and CP revealed that P. minor had the highest (p<0.05) soluble fraction (a) followed by wheat and maize. Reverse trend was observed for insoluble but potentially degradable fraction (b). The effective and true DM and CP degradability was significantly (p<0.05) higher in wheat grains followed by that in P. minor and maize grains. The digestibility of OM and NDF was not affected by replacing cereal grains in concentrate mixture with P. minor seeds up to 75 per cent level. But the availability of ME from concentrate mixtures was comparable to control only up to 50% level of replacement. Replacement of cereal grains with P. minor did not affect the rapidly soluble fraction and insoluble but potentially degradable fraction of concentrate mixture containing P. minor up to 75 per cent, but it was depressed significantly at 100% replacement level. The effective and true degradability of DM of concentrate mixtures containing P. minor from 50 to 100 per cent was comparable to that of conventional concentrate mixture (CCM). The wheat based concentrate mixtures showed higher net gas production (208 vs. 201 ml/g DM/24 h), digestibility of nutrients and ME availability (9.64 vs. 9.54 MJ/kg DM) as compared to maize based concentrate mixture. The wheat based concentrate mixture had significantly (p<0.05) higher rumen undegradable fraction and effective degradability. The data conclusively revealed that conventional cereal grains could be replaced with P.minor seeds up to 75 per cent without affecting the availability of nutrients.

Nutritive Evaluation of Some Fodder Tree Species during the Dry Season in Central Sudan

  • Fadel Elseed, A.M.A.;Amin, A.E.;Khadiga,;Abdel Ati, A.;Sekine, J.;Hishinuma, M.;Hamana, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.6
    • /
    • pp.844-850
    • /
    • 2002
  • The potential nutritive value was studied on leaves of seven fodder trees in Central Sudan during dry season at two distinct periods, the early dry and the late. The chemical composition, mineral concentration, in vitro organic matter digestibility (IVOMD), in situ OM or nitrogen degradability and estimated metabolizable energy showed a wide variation among fodder tree species and between different periods of the dry season. Crude protein (CP) ranged from 285 to 197 g/kg DM at early dry season, with a significant reduction in late dry season. Ziziphus spina-christi and Balanites aegyptiaca showed the least reduction in CP content. The NDF, ADF and lignin were about 200, 160 and 19 g/kg DM, respectively at the early period, and significantly increased at the late period of the dry season, except for lignin of Z. spina-christi. For mineral concentration, all fodder tree leaves were rich in calcium but poor in phosphorus. In situ OM degradability significantly decreased at the late period of dry season, but values remained as high as over 600 g/kg OM. At both periods, Z. spina-christi showed the highest value, while the lowest was recorded in Acacia seyal. The IVOMD showed a similar trend to those of in situ OM degradability, except for A. seyal. The nitrogen degradability was highest in B. aegyptiaca and lowest in Z. spina-christi at both periods. A significant and positive correlation had existed between CP and IVOMD or in situ OM degradability (r=0.68, p<0.05; r=0.77, p<0.05, respectively). Also, a significant but negative correlation was found between condensed tannins and nitrogen degradability (r=-0.87, p<0.01). Results demonstrated that Z. spina-christi potentially has a good nutritive value as dry season feed or supplement, while A. seyal tends to be less promising. A. nubica and B. aegyptiaca may be a useful source for degradable protein, even though it may have a limited supply of energy to animals. A. tortilis, A. mellifera and A. ehrenbergiana may have potential value for a supplementation of energy or protein, if they were harvested in the early dry season or in wet season as preserved feed. It is highly recommended to supplement with an appropriate amount of phosphorus when these fodder trees were used.

Evaluation of Some Agri-industrial By-products Available in Samoa for Goats

  • Aregheore, E.M.;Abdulrazak, S.A.;Fujihara, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.11
    • /
    • pp.1593-1598
    • /
    • 2003
  • Nutritional evaluation of some agro-industrial byproducts available in Samoa [dry brewers' grains (DBG), cocoa shell (CS), cocoa dust (CD) and desiccated coconut waste meal (DCWM)] available in Samoa was carried out using both the in vivo and in vitro techniques. In the in vivo study 24 Anglo-nubian goats were offered by-products with other feed ingredients to compound four different diets. The goats were randomly allocated to 4 diets on the basis of liveweight (18.7-0.3kg). The ADF content of the byproducts followed a similar trend to NDF. The byproducts have a high content of organic matter (91.0-95.4%). Gross energy (GE) content was higher in DCWM (25.1 MJ/kg DM), closely followed by CD (23.2 MJ/kg DM). Concentrate intake was significantly different (p<0.05) among the goats. Average daily live weight gains were 105, 92, 88 and 97 g/goat/day for DBG, CS, CD and DCWM, respectively. Daily live weight gains were higher (p<0.05) in the goats that received DBG, while the least gain was obtained in the goats that received CS byproduct diet. DM digestibility was significantly higher (p<0.05) in the goats on DBG diet than in the other goats. The least DM digestibility was obtained in the goats that received CD diet (p>0.05). CP digestibility followed a similar pattern to DM digestibility. The digestibility of NDF and ADF was influenced by the nature of the diets. The digestibility of OM and GE were best (p<0.05) in the goats that received DBG, DCWM and CS byproduct diets than in CD. Significant differences (p<0.05) among the byproducts were recorded for net gas production. Potential gas production (a+b) ranged from 7.064 to 42.17 ml. Organic matter digested (OMD) from gas production value at 24 h was higher in DBG (47.6 g/kg DM) and this was followed by DCWM (42.5 g/kg DM). The least OMD was obtained in CD (17.9 g/kg DM). A significant difference (p<0.05) in DM disappearance after 4, 8, 16, 24, 48 and 72 h was recorded. The potential and effective degradability varied significantly (p<0.05) from 85.95-99.6 g/kg DM and from 39.9-65.8%, respectively. The digestibility of the byproducts in both the in vivo and in in vitro techniques demonstrated that they are potential source of feed ingredients for ruminant livestock in Samoa and possibly in the other small Pacific Island countries. On the basis of their potential degradability the byproducts could be ranked in the following order:DCWM>DBG>CD>CS. In conclusion, the results obtained suggest that all the byproducts can contribute to ruminant livestock diets without adverse effects on feed intake, growth rate and apparent nutrient digestibility coefficients.

In vitro Fermentation, Digestion Kinetics and Methane Production of Oilseed Press Cakes from Biodiesel Production

  • Olivares-Palma, S.M.;Meale, S.J.;Pereira, L.G.R.;Machado, F.S.;Carneiro, H.;Lopes, F.C.F.;Mauricio, R.M.;Chaves, Alex V.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.8
    • /
    • pp.1102-1110
    • /
    • 2013
  • Following the extraction of oil for biodiesel production, oilseed press cakes are high in fat. As the dietary supplementation of fat is currently considered the most promising strategy of consistently depressing methanogenesis, it follows that oilseed press cakes may have a similar potential for $CH_4$ abatement. As such, this study aimed to characterise the nutritive value of several oilseed press cakes, glycerine and soybean meal (SBM) and to examine their effects on in vitro ruminal fermentation, digestion kinetics and $CH_4$ production. Moringa press oil seeds exhibited the greatest in sacco effective degradability (ED) of DM and CP (p<0.05). In vitro gas production (ml/g digested DM) was not affected (p = 0.70) by supplement at 48 h of incubation. In vitro DMD was increased with the supplementation of glycerine and SBM at all levels of inclusion. Moringa oilseed press cakes produced the lowest $CH_4$ (mg/g digested DM) at 6 and 12 h of incubation (p<0.05). The findings suggest that moringa oilseed press cake at 400 g/kg DM has the greatest potential of the oilseed press cakes examined in this study, to reduce $CH_4$ production, without adversely affecting nutrient degradability.

Effect of Synchronizing Starch Sources and Protein (NPN) in the Rumen on Feed Intake, Rumen Microbial Fermentation, Nutrient Utilization and Performance of Lactating Dairy Cows

  • Chanjula, P.;Wanapat, M.;Wachirapakorn, C.;Rowlinson, P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.10
    • /
    • pp.1400-1410
    • /
    • 2004
  • Eight crossbred (75% Holstein Friesian) cows in mid-lactation were randomly assigned to a switchback design with a 2x2 factorial arrangement to evaluate two nonstructural carbohydrate (NSC) sources (corn meal and cassava chips) with different rumen degradability and used at two levels of NSC (55 vs. 75%) with protein source (supplied by urea in the concentrate mix). The treatments were 1) Low degradable low level of corn (55%) 2) Low degradable high level of corn (75%) 3) High degradable low level of cassava (55%) and 4) High degradable high level of cassava (75%). The cows were offered the treatment concentrate at a ratio to milk yield at 1:2. Urea-treated rice straw was offered ad libitum as the roughage and supplement with 1 kg/hd/d cassava hay. The results revealed that total DM intake, BW and digestion coefficients of DM were not affected by either level or source of energy. Rumen fermentation parameters; NH3-N, blood urea nitrogen and milk urea nitrogen were unaffected by source of energy, but were dramatically increased by level of NSC. Rumen microorganism populations were not affected (p>0.05) by source of energy, but fungal zoospores were greater for cassava-based concentrate than corn-based concentrate. Milk production and milk composition were not affected significantly by diets containing either source or level of NSC, however concentrate than corn-based concentrate averaging (4.4 and 4.2, respectively). Likewise, income over feed, as estimated from 3.5% FCM, was higher on cassava-based concentrate than corn-based concentrate averaging (54.0 and 51.4 US$/mo, respectively). These results indicate that feeding diets containing either cassava-based diets and/or a higher of oncentrates up to 75% of DM with NPN (supplied by urea up to 4.5% of DM) can be used in dairy rations without altering rumen ecology or animal performance compared with corn-based concentrate.

IN SITU RUMINAL DEGRADATION KINETICS OF FORAGES AND FEED BYPRODUCTS IN MALE NILI-RAVI BUFFALO CALVES

  • Sarwar, M.;Mahmood, S.;Abbas, W.;Ali, C.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.5
    • /
    • pp.533-538
    • /
    • 1996
  • The rate and extent of digestion of dietary carbohydrates has a tremendous impact on ruminal fermentation and the productivity of the animals. The objective of the study was to determine the dry matter (DM) and neutral detergent fiber (NDF) degradabilities and rate and extent of feed byproducts (cotton seed cake, wheat bran), legumes [berseem (Egyptian clover), lucern (Medicago sativa), cowpeas (Vigna sinensis)], grasses [maize (Zea mays), millet (Panicum miliaceum), sorghum (Sorghum vulgare)] and wheat straw in ruminally fistulated male buffalo calves. By using nylon bags, 10 grams sample was exposed to the ruminal fermentation for 0, 1, 2, 4, 6, 10, 16, 24, 36, 48 and 96 hours. Dry matter and NDF degradability was measured at 48 hours. Extent of DM and NDF disappearance was determined at each time point. Rates of disappearance of DM and NDF were determined by regressing the natural logarithm of the percentage of original DM and NDF remaining in the bags between 1 and 96 hours. The dry matter digestibility (DMD) of the feed byproducts (FBP) and legume forages when incubated in the rumen of male buffalo calves were greater (p < 0.05) than grasses. Extent of digestion followed similar pattern as DMD. Rate of DMD was higher in FBP than in legumes and was the lowest in the wheat straw. The NDF degradability (NDFD) of FBP, legumes and grasses did not differ, however, wheat straw had the lowest NDFD from all the feeds tested. The lowest NDFD of wheat straw may have been due to the depressing effect of lignin on fiber digestion. The FBP and legumes had higher (p < 0.05) rates and lower extents of NDF digestion than grasses.

Effects of Ammonia, Urea Plus Calcium Hydroxide and Animal Urine Treatments on Chemical Composition and In sacco Degradability of Rice Straw

  • Fadel Elseed, A.M.A.;Sekine, J.;Hishinuma, M.;Hamana, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.3
    • /
    • pp.368-373
    • /
    • 2003
  • This experiment was conducted to examine the effects on the composition and rumen degradation in sacco of rice straw treated with animal urine (1 l of 2.9 g N/kg DM straw) and urea plus calcium hydroxide (2% urea plus 0.5% $Ca(OH)_2$/kg DM straw) as a cheap and relatively safe alternative for ammonia (3% ammonia solution/kg DM straw). Mold occurred in urine treated straw, but other treatments were apparently mold-free. All treatments significantly (p<0.05) increased CP content in the straw compared with untreated one. Ammonia-treated straw contained CP at about twice that in urine or urea-calcium hydroxide treated straw. NDF and hemicellulose contents decreased significantly (p<0.05) in all treatments, while ADF and cellulose showed no differences compared with untreated straw. The degradable fraction of DM, CP, NDF, hemicellulose and cellulose was significantly (p<0.05) increased for ammonia and urea-calcium hydroxide treatments than for urine treated or untreated straw except for CP of urine treated straw. Chemical treatment of rice straw increased the readily degradable fraction of CP, while it decreased the slowly degradable fraction for urine or urea-calcium hydroxide treated rice straw. The degradation rate of hemicellulose was significantly (p<0.05) increased for ammonia and urea-calcium hydroxide treatments compared to urine treated or untreated straw. However, no effect on cellulose degradation rate was found by any of the treatments. There was no improvement in the degradation kinetics caused by the urine treatment despite the improvement of the chemical composition. Although the improvement in rumen degradability was less in the urea-calcium hydroxide treatment than in the ammonia treatment, its use may be more desirable because it is less expensive to obtain, less hazardous nature, and readily available. For further improvement it is necessary to investigate the supplementation of slowly degradable nitrogen to ureacalcium hydroxide treated rice straw diet.

Comparison of In situ Dry Matter Degradation with In vitro Gas Production of Oak Leaves Supplemented with or without Polyethylene Glycol (PEG)

  • Ozkan, C. Ozgur;Sahin, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.8
    • /
    • pp.1120-1126
    • /
    • 2006
  • Dry matter (DM) degradation of leaves from Quercus cercis, Quercus libari, Quercus branti, and Quercus coccifera was determined using two different techniques: (i) in vitro gas production and (ii) the nylon bag degradability technique. In vitro gas production in the presence or absence of PEG and in situ DM disappearance were measured at 3, 6, 12, 24, 48, 72 and 96 h. In situ and in vitro DM degradation kinetics were described using the equation y = a+b ($1-e^{-ct}$). At all incubation times leaves from Quercus branti incubated with or without PEG gave significantly higher gas production than the other oak leaves except for 3 and 6 h incubation when leaves from Quercus branti without PEG supplementation only gave higher gas production than Quercus cercis and Quercus coccifera. At all incubation times except at 3, 6 and 12 h the DM disappearance from Quercus branti was significantly higher than the other species. Generally, PEG supplementation considerably increased the gas production at all incubation times and estimated parameters such as gas production rate ($c_{gas}$), gas production (ml) from the quickly soluble fraction ($a_{gas}$), gas production (b) from the insoluble fraction, potential gas production (a+b). However, all oak leaves did not give the same response to the PEG supplementation. Although the increase in gas production at 96 h incubation time was 8.9 ml for Quercus libari the increase was 5.5 ml for Quercus coccifera. It was concluded that except at early incubation times the relationships between the two methodologies seem to be sufficiently strong to predict degradability parameters from gas production parameters obtained in the presence or absence of PEG.