• Title/Summary/Keyword: DLR

Search Result 74, Processing Time 0.022 seconds

Improving Diagnostic Performance of MRI for Temporal Lobe Epilepsy With Deep Learning-Based Image Reconstruction in Patients With Suspected Focal Epilepsy

  • Pae Sun Suh;Ji Eun Park;Yun Hwa Roh;Seonok Kim;Mina Jung;Yong Seo Koo;Sang-Ahm Lee;Yangsean Choi;Ho Sung Kim
    • Korean Journal of Radiology
    • /
    • v.25 no.4
    • /
    • pp.374-383
    • /
    • 2024
  • Objective: To evaluate the diagnostic performance and image quality of 1.5-mm slice thickness MRI with deep learningbased image reconstruction (1.5-mm MRI + DLR) compared to routine 3-mm slice thickness MRI (routine MRI) and 1.5-mm slice thickness MRI without DLR (1.5-mm MRI without DLR) for evaluating temporal lobe epilepsy (TLE). Materials and Methods: This retrospective study included 117 MR image sets comprising 1.5-mm MRI + DLR, 1.5-mm MRI without DLR, and routine MRI from 117 consecutive patients (mean age, 41 years; 61 female; 34 patients with TLE and 83 without TLE). Two neuroradiologists evaluated the presence of hippocampal or temporal lobe lesions, volume loss, signal abnormalities, loss of internal structure of the hippocampus, and lesion conspicuity in the temporal lobe. Reference standards for TLE were independently constructed by neurologists using clinical and radiological findings. Subjective image quality, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were analyzed. Performance in diagnosing TLE, lesion findings, and image quality were compared among the three protocols. Results: The pooled sensitivity of 1.5-mm MRI + DLR (91.2%) for diagnosing TLE was higher than that of routine MRI (72.1%, P < 0.001). In the subgroup analysis, 1.5-mm MRI + DLR showed higher sensitivity for hippocampal lesions than routine MRI (92.7% vs. 75.0%, P = 0.001), with improved depiction of hippocampal T2 high signal intensity change (P = 0.016) and loss of internal structure (P < 0.001). However, the pooled specificity of 1.5-mm MRI + DLR (76.5%) was lower than that of routine MRI (89.2%, P = 0.004). Compared with 1.5-mm MRI without DLR, 1.5-mm MRI + DLR resulted in significantly improved pooled accuracy (91.2% vs. 73.1%, P = 0.010), image quality, SNR, and CNR (all, P < 0.001). Conclusion: The use of 1.5-mm MRI + DLR enhanced the performance of MRI in diagnosing TLE, particularly in hippocampal evaluation, because of improved depiction of hippocampal abnormalities and enhanced image quality.

Comparison of a Deep Learning-Based Reconstruction Algorithm with Filtered Back Projection and Iterative Reconstruction Algorithms for Pediatric Abdominopelvic CT

  • Wookon Son;MinWoo Kim;Jae-Yeon Hwang;Young-Woo Kim;Chankue Park;Ki Seok Choo;Tae Un Kim;Joo Yeon Jang
    • Korean Journal of Radiology
    • /
    • v.23 no.7
    • /
    • pp.752-762
    • /
    • 2022
  • Objective: To compare a deep learning-based reconstruction (DLR) algorithm for pediatric abdominopelvic computed tomography (CT) with filtered back projection (FBP) and iterative reconstruction (IR) algorithms. Materials and Methods: Post-contrast abdominopelvic CT scans obtained from 120 pediatric patients (mean age ± standard deviation, 8.7 ± 5.2 years; 60 males) between May 2020 and October 2020 were evaluated in this retrospective study. Images were reconstructed using FBP, a hybrid IR algorithm (ASiR-V) with blending factors of 50% and 100% (AV50 and AV100, respectively), and a DLR algorithm (TrueFidelity) with three strength levels (low, medium, and high). Noise power spectrum (NPS) and edge rise distance (ERD) were used to evaluate noise characteristics and spatial resolution, respectively. Image noise, edge definition, overall image quality, lesion detectability and conspicuity, and artifacts were qualitatively scored by two pediatric radiologists, and the scores of the two reviewers were averaged. A repeated-measures analysis of variance followed by the Bonferroni post-hoc test was used to compare NPS and ERD among the six reconstruction methods. The Friedman rank sum test followed by the Nemenyi-Wilcoxon-Wilcox all-pairs test was used to compare the results of the qualitative visual analysis among the six reconstruction methods. Results: The NPS noise magnitude of AV100 was significantly lower than that of the DLR, whereas the NPS peak of AV100 was significantly higher than that of the high- and medium-strength DLR (p < 0.001). The NPS average spatial frequencies were higher for DLR than for ASiR-V (p < 0.001). ERD was shorter with DLR than with ASiR-V and FBP (p < 0.001). Qualitative visual analysis revealed better overall image quality with high-strength DLR than with ASiR-V (p < 0.001). Conclusion: For pediatric abdominopelvic CT, the DLR algorithm may provide improved noise characteristics and better spatial resolution than the hybrid IR algorithm.

Computation of Turbulent Flows and Aero-Acoustics from DLR Axial Fan (DLR 축류홴 주위의 난류유동 및 공력소음의 계산)

  • 배일성;장성욱;이승배
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.762-767
    • /
    • 2001
  • LES formulation was applied to simulate the flow fields around rotating fan blades tested by DLR. The turbulent flows around fan blade rotating with 500 RPM were simulated and the far-field noise was exactly computed by using the Focus Williams and Hawkings equation with an inclusion of quadrapole source formulation. The dipole noise computed at the far-field by predicted drag and lift forces at steady state was in good agreement with experimental data and the dipole source was also found to be the major factor than other sound sources from unsteady calculation.

  • PDF

Characteristics and Key Parameters of Dual Bell Nozzles of the DLR, Germany (독일 DLR의 듀얼 벨 노즐 특성 및 핵심 변수)

  • Kim, Jeonghoon;Huh, Hwanil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.11
    • /
    • pp.952-962
    • /
    • 2015
  • Various types of altitude compensation nozzles have been investigated to develop an effective propulsion system. In order to obtain baseline data for future study of dual bell nozzles, main characteristics and key parameters of dual bell nozzles are summarized and described by analysing DLR dual bell nozzles. DLR's experimental researches show that inflection angle is proportional to transition NPR, and extension length is proportional to side load, but inversely proportional to transition NPR and transition duration. Therefore, the nozzle geometry can be determined through the performance prediction process and thus the optimization process is required to meet performance requirements between parameters.

Improvement in Image Quality and Visibility of Coronary Arteries, Stents, and Valve Structures on CT Angiography by Deep Learning Reconstruction

  • Chuluunbaatar Otgonbaatar;Jae-Kyun Ryu;Jaemin Shin;Ji Young Woo;Jung Wook Seo;Hackjoon Shim;Dae Hyun Hwang
    • Korean Journal of Radiology
    • /
    • v.23 no.11
    • /
    • pp.1044-1054
    • /
    • 2022
  • Objective: This study aimed to investigate whether a deep learning reconstruction (DLR) method improves the image quality, stent evaluation, and visibility of the valve apparatus in coronary computed tomography angiography (CCTA) when compared with filtered back projection (FBP) and hybrid iterative reconstruction (IR) methods. Materials and Methods: CCTA images of 51 patients (mean age ± standard deviation [SD], 63.9 ± 9.8 years, 36 male) who underwent examination at a single institution were reconstructed using DLR, FBP, and hybrid IR methods and reviewed. CT attenuation, image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and stent evaluation, including 10%-90% edge rise slope (ERS) and 10%-90% edge rise distance (ERD), were measured. Quantitative data are summarized as the mean ± SD. The subjective visual scores (1 for worst -5 for best) of the images were obtained for the following: overall image quality, image noise, and appearance of stent, vessel, and aortic and tricuspid valve apparatus (annulus, leaflets, papillary muscles, and chordae tendineae). These parameters were compared between the DLR, FBP, and hybrid IR methods. Results: DLR provided higher Hounsfield unit (HU) values in the aorta and similar attenuation in the fat and muscle compared with FBP and hybrid IR. The image noise in HU was significantly lower in DLR (12.6 ± 2.2) than in hybrid IR (24.2 ± 3.0) and FBP (54.2 ± 9.5) (p < 0.001). The SNR and CNR were significantly higher in the DLR group than in the FBP and hybrid IR groups (p < 0.001). In the coronary stent, the mean value of ERS was significantly higher in DLR (1260.4 ± 242.5 HU/mm) than that of FBP (801.9 ± 170.7 HU/mm) and hybrid IR (641.9 ± 112.0 HU/mm). The mean value of ERD was measured as 0.8 ± 0.1 mm for DLR while it was 1.1 ± 0.2 mm for FBP and 1.1 ± 0.2 mm for hybrid IR. The subjective visual scores were higher in the DLR than in the images reconstructed with FBP and hybrid IR. Conclusion: DLR reconstruction provided better images than FBP and hybrid IR reconstruction.

Impact of Deep-Learning Based Reconstruction on Single-Breath-Hold, Single-Shot Fast Spin-Echo in MR Enterography for Crohn's Disease (크론병에서 자기공명영상 장운동기록의 단일호흡 단발 고속 스핀 에코기법: 딥러닝 기반 재구성의 영향)

  • Eun Joo Park;Yedaun Lee;Joonsung Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.84 no.6
    • /
    • pp.1309-1323
    • /
    • 2023
  • Purpose To assess the quality of four images obtained using single-breath-hold (SBH), single-shot fast spin-echo (SSFSE) and multiple-breath-hold (MBH) SSFSE with and without deep-learning based reconstruction (DLR) in patients with Crohn's disease. Materials and Methods This study included 61 patients who underwent MR enterography (MRE) for Crohn's disease. The following images were compared: SBH-SSFSE with (SBH-DLR) and without (SBH-conventional reconstruction [CR]) DLR and MBH-SSFSE with (MBH-DLR) and without (MBH-CR) DLR. Two radiologists independently reviewed the overall image quality, artifacts, sharpness, and motion-related signal loss using a 5-point scale. Three inflammatory parameters were evaluated in the ileum, the terminal ileum, and the colon. Moreover, the presence of a spatial misalignment was evaluated. Signal-to-noise ratio (SNR) was calculated at two locations for each sequence. Results DLR significantly improved the image quality, artifacts, and sharpness of the SBH images. No significant differences in scores between MBH-CR and SBH-DLR were detected. SBH-DLR had the highest SNR (p < 0.001). The inter-reader agreement for inflammatory parameters was good to excellent (κ = 0.76-0.95) and the inter-sequence agreement was nearly perfect (κ = 0.92-0.94). Misalignment artifacts were observed more frequently in the MBH images than in the SBH images (p < 0.001). Conclusion SBH-DLR demonstrated equivalent quality and performance compared to MBH-CR. Furthermore, it can be acquired in less than half the time, without multiple BHs and reduce slice misalignments.

Test of Model Specification in Panel Regression Model with Two Error Components (이원오차성분을 갖는 패널회귀모형의 모형식별검정)

  • Song, Seuck-Heun;Kim, Young-Ji;Hwang, Sun-Young
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.3
    • /
    • pp.461-479
    • /
    • 2006
  • This paper derives joint and conditional Lagrange multiplier tests based on Double-Length Artificial Regression(DLR) for testing functional form and/or the presence of individual(time) effect in a panel regression model. Small sample properties of these tests are assessed by Monte Carlo study, and comparisons are made with LM tests based on Outer Product Gradient(OPG). The results show that the proposed DLR based LM tests have the most appropriate finite sample performance.

A Design for Dynamic Line Rating System to increase Overhead Transmission Line Capacities (가공송전선의 송전용량을 증가시키기 위한 동적송전용량 시스템의 설계)

  • Kim, Sung-Duck
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.7
    • /
    • pp.72-77
    • /
    • 2011
  • Dynamic Line Rating (DLR) techniques have been greatly worthy of notice for efficiently increasing transmission capacity as well as controlling load-flow in overhead transmission lines, in comparison with the existing power system operating with Static Line Rating (SLR). This paper describes an utilization method to implement DLR control system for old transmission lines built in the first stage using the ground clearance design standard with lower dips. The suggested DLR system is focused on designing as temperature control system rather than current/load control system. Based on several performance for conductor temperatures, it is shown that DLR system with efficiency can be implemented.

A Study on Estimation of Dynamic Line Rating Using the Indirect Conductor Method (간접도체 방식에 의한 가공선 동적허용전류 추정)

  • Jang, T.I.;Kang, J.W.;Hong, D.S.;Lee, S.D.;Lee, D.I.;Min, B.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.583-585
    • /
    • 2005
  • 선로의 DLR을 추정하는 방식 중에서 간접도체 방식은 시험도체가 선로의 도체와 유사한 환경에 직접 노출되어 있어서 일사량, 풍속, 풍향 통 측정감도가 낮은 요소들을 직접 측정하여 사용하지 않아도 이들의 종합적인 효과를 반영할 수 있는 장점이 있다. 본 논문에서는 간접도체 방식에 의한 DLR 추정 알고리즘을 보이고 가열도체와 비가열도체를 사용한 실험을 통하여 추정 풍속 및 DLR 산정결과가 실측 풍속 및 기상요소로 추정한 값들과 거의 일치함을 보임으로써 DLR 산정 방식으로서 간접도체 이용의 타당성을 제시하였다.

  • PDF

A Study on Estimation of Dynamic Line Rating Using the Weather Model (기상모델에 의한 가공선 동적허용전류 추정)

  • Kang, J.W.;Hong, D.S.;Jang, T.I.;Lee, D.I.;Choi, H.Y.;Oh, C.H.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.586-588
    • /
    • 2005
  • 도체의 허용전류를 추정하기 위하여 기상모델을 적용할 경우 기온 및 풍속 둥은 지역에 따라 불규칙하게 변화되므로 DLR 추정 및 운용에는 모니터링 위치의 선정 및 측정 개소의 증감 둥 여러 가지 고려해야 할 점들이 존재하게 된다. 측정된 기상요소의 추세들은 DLR 결과에 그대로 반영되므로, 각 기상 요소에 대한 유형을 정확하게 추정할 수 있으면 이 특성을 정량화하여 DLR 계산에 이용할 수 있을 것이다. 본 논문에서는 2001년 1년 동안 대전지방기상청에서 측정된 기상데이터를 사용하여 기상 모델의 각 요소와 DLR추정 결과 사이의 특성을 비교 및 검토하였다.

  • PDF