• Title/Summary/Keyword: DJIA

Search Result 9, Processing Time 0.026 seconds

Empirical Analysis on the Spillover Effects between Korean and U.S. Stock Market after U.S. Financial Crisis (서브프라임사태 전후 한미간 정보전이현상에 관한 연구)

  • Yae, Min Soo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.4 no.4
    • /
    • pp.113-125
    • /
    • 2008
  • This paper investigates the spillover effects(co-movements) between korean and U.S stock market by KOSPI and DJIA Index. Especially it compare to the pre- and post period of U.S. financial crisis resulted from sub-prime mortgage loan. The main results are as follows. First, the spillover effects of DJIA(U.S. market) to KOSPI(Korean market) are strong. This result accord with the former researches on this subject. Second, spillover effects are more strong after U.S. financial crisis. A possible reason for this phenomenon is a trend which the major investors such as foreign and institutional investors in domestic stock market have more attention to U.S. stock market. Third, the spillover effects appear in the opposite direction, that is KOSPI(Korean Stock Market) to DJIA(U.S. Stock Market). It seems to be the results of asian stock market's growing infIuences to European and U.S Markets.

WHICH INFORMATION MOVES PRICES: EVIDENCE FROM DAYS WITH DIVIDEND AND EARNINGS ANNOUNCEMENTS AND INSIDER TRADING

  • Kim, Chan-Wung;Lee, Jae-Ha
    • The Korean Journal of Financial Studies
    • /
    • v.3 no.1
    • /
    • pp.233-265
    • /
    • 1996
  • We examine the impact of public and private information on price movements using the thirty DJIA stocks and twenty-one NASDAQ stocks. We find that the standard deviation of daily returns on information days (dividend announcement, earnings announcement, insider purchase, or insider sale) is much higher than on no-information days. Both public information matters at the NYSE, probably due to masked identification of insiders. Earnings announcement has the greatest impact for both DJIA and NASDAQ stocks, and there is some evidence of positive impact of insider asle on return volatility of NASDAQ stocks. There has been considerable debate, e.g., French and Roll (1986), over whether market volatility is due to public information or private information-the latter gathered through costly search and only revealed through trading. Public information is composed of (1) marketwide public information such as regularly scheduled federal economic announcements (e.g., employment, GNP, leading indicators) and (2) company-specific public information such as dividend and earnings announcements. Policy makers and corporate insiders have a better access to marketwide private information (e.g., a new monetary policy decision made in the Federal Reserve Board meeting) and company-specific private information, respectively, compated to the general public. Ederington and Lee (1993) show that marketwide public information accounts for most of the observed volatility patterns in interest rate and foreign exchange futures markets. Company-specific public information is explored by Patell and Wolfson (1984) and Jennings and Starks (1985). They show that dividend and earnings announcements induce higher than normal volatility in equity prices. Kyle (1985), Admati and Pfleiderer (1988), Barclay, Litzenberger and Warner (1990), Foster and Viswanathan (1990), Back (1992), and Barclay and Warner (1993) show that the private information help by informed traders and revealed through trading influences market volatility. Cornell and Sirri (1992)' and Meulbroek (1992) investigate the actual insider trading activities in a tender offer case and the prosecuted illegal trading cased, respectively. This paper examines the aggregate and individual impact of marketwide information, company-specific public information, and company-specific private information on equity prices. Specifically, we use the thirty common stocks in the Dow Jones Industrial Average (DJIA) and twenty one National Association of Securities Dealers Automated Quotations (NASDAQ) common stocks to examine how their prices react to information. Marketwide information (public and private) is estimated by the movement in the Standard and Poors (S & P) 500 Index price for the DJIA stocks and the movement in the NASDAQ Composite Index price for the NASDAQ stocks. Divedend and earnings announcements are used as a subset of company-specific public information. The trading activity of corporate insiders (major corporate officers, members of the board of directors, and owners of at least 10 percent of any equity class) with an access to private information can be cannot legally trade on private information. Therefore, most insider transactions are not necessarily based on private information. Nevertheless, we hypothesize that market participants observe how insiders trade in order to infer any information that they cannot possess because insiders tend to buy (sell) when they have good (bad) information about their company. For example, Damodaran and Liu (1993) show that insiders of real estate investment trusts buy (sell) after they receive favorable (unfavorable) appraisal news before the information in these appraisals is released to the public. Price discovery in a competitive multiple-dealership market (NASDAQ) would be different from that in a monopolistic specialist system (NYSE). Consequently, we hypothesize that NASDAQ stocks are affected more by private information (or more precisely, insider trading) than the DJIA stocks. In the next section, we describe our choices of the fifty-one stocks and the public and private information set. We also discuss institutional differences between the NYSE and the NASDAQ market. In Section II, we examine the implications of public and private information for the volatility of daily returns of each stock. In Section III, we turn to the question of the relative importance of individual elements of our information set. Further analysis of the five DJIA stocks and the four NASDAQ stocks that are most sensitive to earnings announcements is given in Section IV, and our results are summarized in Section V.

  • PDF

Deep learning forecasting for financial realized volatilities with aid of implied volatilities and internet search volumes (금융 실현변동성을 위한 내재변동성과 인터넷 검색량을 활용한 딥러닝)

  • Shin, Jiwon;Shin, Dong Wan
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.1
    • /
    • pp.93-104
    • /
    • 2022
  • In forecasting realized volatility of the major US stock price indexes (S&P 500, Russell 2000, DJIA, Nasdaq 100), internet search volume reflecting investor's interests and implied volatility are used to improve forecast via a deep learning method of the LSTM. The LSTM method combined with search volume index produces better forecasts than existing standard methods of the vector autoregressive (VAR) and the vector error correction (VEC) models. It also beats the recently proposed vector error correction heterogeneous autoregressive (VECHAR) model which takes advantage of the cointegration relation between realized volatility and implied volatility.

LIHAR model for forecasting realized volatilities featuring long-memory and asymmetry (장기기억성과 비대칭성을 띠는 실현변동성의 예측을 위한 LIHAR모형)

  • Shin, Jiwon;Shin, Dong Wan
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.7
    • /
    • pp.1213-1229
    • /
    • 2016
  • Cho and Shin (2016) recently demonstrated that an integrated HAR model has a forecast advantage over the HAR model of Corsi (2009). Recalling that realized volatilities of financial assets have asymmetries, we add a leverage term to the integrated HAR model, yielding the LIHAR model. Out-of-sample forecast comparisons show superiority of the LIHAR model over the HAR and IHAR models. The comparison was made for all the 20 realized volatilities in the Oxford-Man Realized Library focusing specially on the DJIA, the S&P 500, the Russell 2000, and the KOSPI. Analysis of the realized volatility data sets reveal apparent long-memory and asymmetry. The LIHAR model takes advantage of the long-memory and asymmetry and produces better forecasts than the HAR, IHAR, LHAR models.

The Influence of Macroeconomics Variables on Sportainment Industry - Case Study Using the Stock Price Changes of Nike, Adidas - (거시경제요인이 스포테인먼트 산업에 미치는 영향 - NIKE, Adidas 기업 주가를 중심으로 -)

  • Kim, Hun-Il
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.5
    • /
    • pp.99-113
    • /
    • 2021
  • This study to verify the influence of the macroeconomic factors to sportainment industry and also to find the value of use. For this, 'Dow Jones Industrial Average (DJIA)', 'West Texas intermediate (WTI)', and 'Gold Price (GP)' were selected from macroeconomic factors, and the 'Stock Price' of NIKE and Adidas for sportainment industry factor. The transaction data for 20 years (5,285 trade days) were analyzed through a two-step extraction process. Durbin-Watson regression analysis was performed to prove the influence and predict. From these analyses, the first, the Macroeconomics factors were found to have a significant effect on the sportainment industry. The second, each different levels of regression equations were found by the time setting, the environmental characteristics of each time period, and mutual relation between factors. Finally, it was found that the regression equation between specific period can be used for the future prediction in sportainment industry.

Forecasting volatility index by temporal convolutional neural network (Causal temporal convolutional neural network를 이용한 변동성 지수 예측)

  • Ji Won Shin;Dong Wan Shin
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.2
    • /
    • pp.129-139
    • /
    • 2023
  • Forecasting volatility is essential to avoiding the risk caused by the uncertainties of an financial asset. Complicated financial volatility features such as ambiguity between non-stationarity and stationarity, asymmetry, long-memory, sudden fairly large values like outliers bring great challenges to volatility forecasts. In order to address such complicated features implicity, we consider machine leaning models such as LSTM (1997) and GRU (2014), which are known to be suitable for existing time series forecasting. However, there are the problems of vanishing gradients, of enormous amount of computation, and of a huge memory. To solve these problems, a causal temporal convolutional network (TCN) model, an advanced form of 1D CNN, is also applied. It is confirmed that the overall forecasting power of TCN model is higher than that of the RNN models in forecasting VIX, VXD, and VXN, the daily volatility indices of S&P 500, DJIA, Nasdaq, respectively.

The Analysis of Tail Dependence Between stock Markets Using Extreme Value Theory and Copula Function (극단치 분포와 Copula함수를 이용한 주식시장간 극단적 의존관계 분석)

  • Kim, Yong Hyun;Bae, Suk Joo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.4
    • /
    • pp.410-418
    • /
    • 2007
  • This article suggests the methods to investigate adverse movement across global stock markets arising from insolvency of subprime mortgage in U.S. Our application deals with asymptotic tail dependence of daily stock index returns (KOSPI, DJIA, Shanghai Composite) of three countries; Korea, U.S., and China, over specific period via extreme value theory and copula functions. Daily stock index returns among three countries show higher extremal dependence during the period exposed to systematic shock. We confirm that extreme value theory and copula functions have potential to well describe the extreme dependence between three countries' daily stock index returns.

Relationship Between Stock Price Indices of Abu Dhabi, Jordan, and USA - Evidence from the Panel Threshold Regression Model

  • Ho, Liang-Chun
    • The Journal of Industrial Distribution & Business
    • /
    • v.4 no.2
    • /
    • pp.13-19
    • /
    • 2013
  • Purpose - The paper tested the relationship between the stock markets of the Middle East and the USA with the oil price and US dollar index as threshold variables. Research design, data, and methodology - The stock price indices of the USA, the Middle East (Abu Dhabi, Jordan), WTI spot crude oil price, and US dollar index were daily returns in the research period from May 21, 2001 to August 9, 2012. Following Hansen (1999), the panel threshold regression model was used. Results - With the US dollar index as the threshold variable, a negative relationship existed between the stock price indices of Jordan and the USA but no significant result was found between the stock price indices of Abu Dhabi and the USA. Conclusions - The USA is an economic power today:even if it has a closer relationship with the US stock market, the dynamic US economy can learn about subsequent developments and plan in advance. Conversely, if it has an estranged relationship with the US stock market, thinking in a different direction and different investment strategies will achieve good results.

Asymmetric and non-stationary GARCH(1, 1) models: parametric bootstrap to evaluate forecasting performance (비대칭-비정상 변동성 모형 평가를 위한 모수적-붓스트랩)

  • Choi, Sun Woo;Yoon, Jae Eun;Lee, Sung Duck;Hwang, Sun Young
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.4
    • /
    • pp.611-622
    • /
    • 2021
  • With a wide recognition that financial time series typically exhibits asymmetry patterns in volatility so called leverage effects, various asymmetric GARCH(1, 1) processes have been introduced to investigate asymmetric volatilities. A lot of researches have also been directed to non-stationary volatilities to deal with frequent high ups and downs in financial time series. This article is concerned with both asymmetric and non-stationary GARCH-type models. As a subsequent paper of Choi et al. (2020), we review various asymmetric and non-stationary GARCH(1, 1) processes, and in turn propose how to compare competing models using a parametric bootstrap methodology. As an illustration, Dow Jones Industrial Average (DJIA) is analyzed.